FREE BOOKS

Author's List




PREV.   NEXT  
|<   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75  
76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   >>   >|  
h they are associated; and other groups have such associations as to indicate much less intense conditions of temperature and pressure. Depth is only one factor determining intensity of conditions, but it affords a convenient way to indicate them; so mineral deposits associated with igneous rocks are sometimes classified by economic geologists on the basis of deep, intermediate, and shallow depths of formation. There are a considerable number of minerals which are formed in all three of these zones, although in differing proportions. There are comparatively few which are uniformly characteristic of a single zone. On the whole, it is possible to contrast satisfactorily mineral deposits representing very intense metamorphic conditions, usually associated with formation at great depth, with those formed at or near the surface; but there are many deposits with intermediate characteristics which it is difficult to place satisfactorily. The accessible deposits of the deep zone are associated with plutonic igneous rocks which have been deeply eroded, and not with surface lavas. They are characterized by minerals of gold, tin, iron, titanium, zinc, and copper, and sometimes of tungsten and molybdenum, in a gangue of quartz, which contains also minerals such as garnet, corundum, amphibole, pyroxene, tourmaline, spinel, and mica. The deep-zone minerals are not unlike the pegmatite minerals in their grouping and associations. Deposits formed at shallow depths are related to extrusive rocks and to intrusives near the surface. Erosion has not been deep. Mercury, silver and gold (tellurides, native metals, and silver sulphides), antimony, lead, and zinc minerals are characteristic, together with alunite, adularia, and barite. Metallic copper also is not infrequent. Very often the gangue material is more largely calcite than quartz, whereas calcite is not present in the deep zone.[5] The trend of evidence in recent years has favored the conclusion that the principal ores associated with igneous rocks have not developed at very great depths. Even within our narrow range of observation there is a difference in favor of the shallower depths, and the greatest depths we can observe are after all but trivial on the scale of the earth. A survey of the ore deposits of Utah has suggested the generalization that ores are more commonly related to intrusive stocks than to the forms known as laccoliths, and that within and about intrusiv
PREV.   NEXT  
|<   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75  
76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   >>   >|  



Top keywords:

minerals

 
deposits
 

depths

 
igneous
 

formed

 

surface

 
conditions
 

silver

 

characteristic

 

calcite


formation

 
related
 

gangue

 

copper

 

satisfactorily

 

quartz

 

associations

 
intense
 

shallow

 

intermediate


mineral

 

material

 

largely

 

groups

 

recent

 
favored
 
evidence
 

present

 
adularia
 

tellurides


native
 

metals

 

Mercury

 

intrusives

 
Erosion
 

sulphides

 

antimony

 

barite

 
Metallic
 

conclusion


alunite

 
infrequent
 

developed

 

suggested

 

survey

 
generalization
 

commonly

 
laccoliths
 

intrusiv

 

intrusive