FREE BOOKS

Author's List




PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   >>   >|  
y to over-emphasize the persistence of primary ores in depth. The very use of the terms "secondary" and "primary" has suggested antithesis between surficial and deep ores. Progress in investigation, as indicated on previous pages, seems to indicate that the primary ores are not uniformly deep and that in many cases they are distinctly limited to a given set of formations or conditions comparatively near the surface. In general the processes of oxidation and secondary sulphide enrichment have been studied mainly by qualitative methods with the aid of the microscope and by considerations of possible chemical processes. These methods have disclosed the nature but not the quantitative range and relations of the different processes. Much remains to be done in the way of large scale quantitative analysis of ores at different depths, as a check to inferences drawn by other methods. One may know, for instance, that a mineral is soluble and is actually removed from the oxide zone and redeposited below. The natural inference, therefore, is that the mineral will be found to be depleted above and enriched below. In many cases its actual distribution is the reverse,--indicating that this process has been only one of the factors in the net result, the more rapid solution and deposition of other materials being another factor. If one were to approach the study of the concentration of iron ores with the fixed idea of insolubility of quartz from a chemical standpoint, and were to draw conclusions accordingly, he would fail to present a true picture of the situation. While quartz is insoluble as compared with most minerals, it is nevertheless more soluble than iron oxide, and therefore the net result of concentration at the surface is to accumulate the iron rather than the silica. Descriptions of enrichment processes as published in many reports are often misleading in this regard. They may be correct in indicating the actual existence of a process, but may lead the reader to assumptions as to net results which are incorrect. RESIDUAL MINERAL DEPOSITS FORMED BY THE WEATHERING OF IGNEOUS ROCKS IN PLACE Igneous rocks not containing mineral deposits may on weathering change to mineral deposits. The lateritic iron ores such as those of Cuba (p. 172), many bauxite deposits, many residual clays, and certain chromite and nickel deposits are conspicuous representatives of this class. The chemical and mineralogical changes involved in the
PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   >>   >|  



Top keywords:

deposits

 
mineral
 
processes
 

chemical

 
primary
 
methods
 
quantitative
 

soluble

 

surface

 

enrichment


actual
 

concentration

 

result

 

secondary

 
process
 
indicating
 

quartz

 

silica

 

minerals

 
accumulate

compared
 

standpoint

 

conclusions

 

insolubility

 
approach
 

Descriptions

 

picture

 
situation
 

present

 
insoluble

lateritic
 

change

 

Igneous

 

weathering

 

bauxite

 
residual
 

mineralogical

 

involved

 

representatives

 
conspicuous

chromite

 

nickel

 

existence

 

reader

 
assumptions
 

results

 

correct

 
reports
 

misleading

 

regard