FREE BOOKS

Author's List




PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  
the body as an amid, which in turn undergoes oxidation and nitrification, and is converted into nitrites, nitrates, and ammonium salts. These forms of nitrogen are then ready to begin again in plant and animal bodies the same cycle of changes. Thus it is that nitrogen may enter a number of times into the composition of plant and animal tissues. Nature is very economical in her use of this element.[5] CHAPTER II CHANGES IN COMPOSITION OF FOODS DURING COOKING AND PREPARATION 26. Raw and Cooked Foods Compared.--Raw and cooked foods differ in chemical composition mainly in the content of water. The amount of nutrients on a dry matter basis is practically the same, but the structural composition is affected by cooking, and hence it is that a food prepared for the table often differs appreciably from the raw material. Cooked meat, for example, has not the same percentage and structural composition as raw meat, although the difference in nutritive value between a given weight of each is not large. During cooking, foods are acted upon chemically, physically, and bacteriologically, and it is usually the joint action of these three agencies that brings about the desirable changes incident to their preparation for the table. 27. Chemical Changes during Cooking.--Each of the chemical compounds of which foods are composed is influenced to a greater or less extent by heat and modified in composition. The chemistry of cooking is mainly a study of the chemical changes that take place when compounds, as cellulose, starch, sugar, pectin, fat, and the various proteids, are subjected to the joint action of heat, moisture, air, and ferments. The changes which affect the cellulose are physical rather than chemical. A slight hydration of the cellular tissue, however, does take place. In human foods cellulose is not found to any appreciable extent. Many vegetables, as potatoes, which are apparently composed of cellular substances, contain but little true cellulose. Starch, as previously stated, undergoes hydration in the presence of water, and, at a temperature of 120 deg. C., is converted into dextrine. At a higher temperature disintegration of the starch molecule takes place, with the formation of carbon monoxid, carbon dioxid, and water, and the production of a residue richer in carbon than is starch. On account of the moisture, the temperature in many cooking operations is not sufficiently high for changes other than hydrat
PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  



Top keywords:

composition

 

cellulose

 

cooking

 
chemical
 

carbon

 

temperature

 

starch

 
cellular
 

hydration

 

structural


Cooked

 

moisture

 
converted
 

action

 

composed

 
compounds
 

nitrogen

 

animal

 

undergoes

 

extent


Changes
 

physical

 
incident
 

Cooking

 

affect

 

Chemical

 

preparation

 

ferments

 
subjected
 

chemistry


modified
 

greater

 

proteids

 

influenced

 
pectin
 

formation

 

monoxid

 

molecule

 
disintegration
 

dextrine


higher

 

dioxid

 

production

 

sufficiently

 
hydrat
 

operations

 

residue

 

richer

 
account
 

desirable