FREE BOOKS

Author's List




PREV.   NEXT  
|<   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102  
103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   >>   >|  
SO_{4} ions for the positive zinc ions, this resulting in the formation of zinc sulphate in the solution. Now the solution itself becomes positively charged, due to the positive charges leaving the zinc plate with the zinc ions, and the free positively charged hydrogen ions liberated in the solution as just described are repelled to the copper plate, carrying their positive charges thereto. Hence the copper plate, or the _unconsumed_ plate, becomes positively charged and also coated with hydrogen bubbles. The plates or electrodes of a voltaic cell need not consist of zinc and copper, nor need the fluid, called the _electrolyte_, be of sulphuric acid; any two dissimilar elements immersed in an electrolyte that attacks one of them more readily than the other will form a voltaic cell. In every such cell it will be found that one of the plates is consumed, and that on the other plate some element is deposited, this element being sometimes a gas and sometimes a solid. The plate which is consumed is always the negative plate, and the one on which the element is deposited is always the positive, the current through the connecting wire always being, therefore, from the unconsumed to the consumed plate. Thus, in the simple copper-zinc cell just considered, the zinc is consumed, the element hydrogen is deposited on the copper, and the current flow through the external circuit is from the copper to the zinc. The positive charges, leaving the zinc, or consumed, plate, and passing through the electrolyte to the copper, or unconsumed, plate, constitute in effect a current of electricity flowing within the electrolyte. The current within the cell passes, therefore, from the zinc plate to the copper plate. The zinc is, therefore, said to be positive with respect to the copper. _Difference of Potential._ The amount of electromotive force, that is generated between two dissimilar elements immersed in an electrolyte is different for different pairs of elements and for different electrolytes. For a given electrolyte each element bears a certain relation to another; _i.e._, they are either electro-positive or electro-negative relative to each other. In the following list a group of elements are arranged with respect to the potentials which they assume with respect to each other with dilute sulphuric acid as the electrolyte. The most electro-positive elements are at the top and the most electro-negative at the bottom. +Sodium
PREV.   NEXT  
|<   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102  
103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   >>   >|  



Top keywords:

copper

 
positive
 

electrolyte

 

element

 

elements

 

consumed

 

electro

 

current

 
solution
 

negative


respect

 

unconsumed

 

deposited

 

charged

 

hydrogen

 
positively
 

charges

 

immersed

 
dissimilar
 

leaving


voltaic

 

plates

 

sulphuric

 

bottom

 
Difference
 

Potential

 

assume

 

electromotive

 

potentials

 

amount


electricity

 

effect

 
constitute
 
flowing
 

Sodium

 

passes

 

dilute

 

generated

 

relation

 

relative


passing

 
arranged
 

electrolytes

 

thereto

 

sulphate

 

called

 

formation

 

resulting

 
attacks
 
bubbles