FREE BOOKS

Author's List




PREV.   NEXT  
|<   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168  
169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   >>   >|  
companying the movement of any star upon which it may be fixed. It accordingly forms part of the large sum of Fraunhofer's merits to have secured this inestimable advantage to observers. Sir John Herschel considered that Lassell's application of equatoreal mounting to a nine-inch Newtonian in 1840 made an epoch in the history of "that eminently British instrument, the reflecting telescope."[339] Nearly a century earlier,[340] it is true, Short had fitted one of his Gregorians to a complicated system of circles in such a manner that, by moving a handle, it could be made to follow the revolution of the sky; but the arrangement did not obtain, nor did it deserve, general adoption. Lassell's plan was a totally different one; he employed the crossed axes of the true equatoreal, and his success removed, to a great extent, the fatal objection of inconvenience in use, until then unanswerably urged against reflectors. The very largest of these can now be mounted equatoreally; even the Rosse, within its limited range, has been for some years provided with a movement by clockwork along declination-parallels. The art of accurately dividing circular arcs into the minute equal parts which serve as the units of astronomical measurement, remained, during the whole of the eighteenth century, almost exclusively in English hands. It was brought to a high degree of perfection by Graham, Bird and Ramsden, all of whom, however, gave the preference to the old-fashioned mural quadrant and zenith-sector over the entire circle, which Roemer had already found the advantage of employing. The five-foot vertical circle, which Piazzi with some difficulty induced Ramsden to complete for him in 1789, was the first divided instrument constructed in what may be called the modern style. It was provided with magnifiers for reading off the divisions (one of the neglected improvements of Roemer), and was set up above a smaller horizontal circle, forming an "altitude and azimuth" combination (again Roemer's invention), by which both the elevation of a celestial object above the horizon and its position as referred to the horizon could be measured. In the same year, Borda invented the "repeating circle" (the principle of which had been suggested by Tobias Mayer in 1756[341]), a device for exterminating, so far as possible, errors of graduation by _repeating_ an observation with different parts of the limb. This was perhaps the earliest systematic effort to c
PREV.   NEXT  
|<   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168  
169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   >>   >|  



Top keywords:
circle
 

Roemer

 

century

 
instrument
 
Ramsden
 
movement
 

horizon

 

equatoreal

 

Lassell

 

repeating


advantage
 
provided
 

complete

 

sector

 

employing

 

zenith

 

entire

 

vertical

 

Piazzi

 

induced


difficulty
 

eighteenth

 

exclusively

 
English
 

astronomical

 
measurement
 
remained
 

brought

 

preference

 

fashioned


degree

 

perfection

 
Graham
 
quadrant
 

invented

 
systematic
 

principle

 

suggested

 

Tobias

 

measured


referred

 

effort

 
observation
 

graduation

 
errors
 
exterminating
 

device

 

earliest

 
position
 

object