FREE BOOKS

Author's List




PREV.   NEXT  
|<   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158  
159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   >>   >|  
781,[312] was due. For by the examination with strong lenses of an object which, even with a power of 227, presented a suspicious appearance, he was able at once to pronounce its disc to be real, not merely "spurious," and so to distinguish it unerringly from the crowd of stars amidst which it was moving. While the reflecting telescope was astonishing the world by its rapid development in the hands of Herschel, its unpretending rival was slowly making its way towards the position which the future had in store for it. The great obstacle which long stood in the way of the improvement of refractors was the defect known as "chromatic aberration." This is due to no other cause than that which produces the rainbow and the spectrum--the separation, or "dispersion" in their passage through a refracting medium, of the variously coloured rays composing a beam of white light. In an ordinary lens there is no common point of concentration; each colour has its own separate focus; and the resulting image, formed by the superposition of as many images as there are hues in the spectrum, is indefinitely terminated with a tinted border, eminently baffling to exactness of observation. The extravagantly long telescopes of the seventeenth century were designed to _avoid_ this evil (as well as another source of indistinct vision in the spherical shape of lenses); but no attempt to _remedy_ it was made until an Essex gentleman succeeded, in 1733, in so combining lenses of flint and crown glass as to produce refraction without colour.[313] Mr. Chester More Hall was, however, equally indifferent to fame and profit, and took no pains to make his invention public. The _effective_ discovery of the achromatic telescope was, accordingly, reserved for John Dollond, whose method of correcting at the same time chromatic and spherical aberration was laid before the Royal Society in 1758. Modern astronomy may be said to have been thereby rendered possible. Refractors have always been found better suited than reflectors to the ordinary work of observatories. They are, so to speak, of a more robust, as well as of a more plastic nature. They suffer less from vicissitudes of temperature and climate. They retain their efficiency with fewer precautions and under more trying circumstances. Above all, they co-operate more readily with mechanical appliances, and lend themselves with far greater facility to purposes of exact measurement. A practical difficul
PREV.   NEXT  
|<   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158  
159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   >>   >|  



Top keywords:

lenses

 

telescope

 

spherical

 
ordinary
 

colour

 

spectrum

 

aberration

 

chromatic

 
public
 

effective


invention

 
method
 

correcting

 
Dollond
 

achromatic

 

reserved

 

discovery

 
succeeded
 

gentleman

 

combining


vision

 
attempt
 

remedy

 

produce

 

indifferent

 

equally

 
profit
 

refraction

 
Chester
 

rendered


operate

 

circumstances

 

efficiency

 

retain

 
precautions
 
readily
 
mechanical
 

measurement

 

practical

 

difficul


purposes

 

facility

 
appliances
 

greater

 

climate

 

temperature

 
indistinct
 

Refractors

 

Society

 

Modern