FREE BOOKS

Author's List




PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  
hem on sea-water. The majority sank quickly, but some which whilst green floated for a very short time, when dried floated much longer; for instance, ripe hazel-nuts sank immediately, but when dried they floated for 90 days, and afterwards when planted they germinated; an asparagus plant with ripe berries floated for 23 days, when dried it floated for 85 days, and the seeds afterwards germinated; the ripe seeds of Helosciadium sank in two days, when dried they floated for above 90 days, and afterwards germinated. Altogether out of the 94 dried plants, 18 floated for above 28 days, and some of the 18 floated for a very much longer period. So that as 64/87 seeds germinated after an immersion of 28 days; and as 18/94 plants with ripe fruit (but not all the same species as in the foregoing experiment) floated, after being dried, for above 28 days, as far as we may infer anything from these scanty facts, we may conclude that the seeds of 14/100 plants of any country might be floated by sea-currents during 28 days, and would retain their power of germination. In Johnston's Physical Atlas, the average {360} rate of the several Atlantic currents is 33 miles per diem (some currents running at the rate of 60 miles per diem); on this average, the seeds of 14/100 plants belonging to one country might be floated across 924 miles of sea to another country; and when stranded, if blown to a favourable spot by an inland gale, they would germinate. Subsequently to my experiments, M. Martens tried similar ones, but in a much better manner, for he placed the seeds in a box in the actual sea, so that they were alternately wet and exposed to the air like really floating plants. He tried 98 seeds, mostly different from mine; but he chose many large fruits and likewise seeds from plants which live near the sea; and this would have favoured the average length of their flotation and of their resistance to the injurious action of the salt-water. On the other hand he did not previously dry the plants or branches with the fruit; and this, as we have seen, would have caused some of them to have floated much longer. The result was that 18/98 of his seeds floated for 42 days, and were then capable of germination. But I do not doubt that plants exposed to the waves would float for a less time than those protected from violent movement as in our experiments. Therefore it would perhaps be safer to assume that the seeds of about 10/100 plants of a flora, af
PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  



Top keywords:

floated

 

plants

 

germinated

 

country

 

longer

 

average

 
currents
 
experiments
 

exposed

 
germination

fruits
 

likewise

 
injurious
 

action

 

resistance

 

flotation

 
favoured
 
length
 

actual

 

alternately


manner

 
majority
 

floating

 

protected

 
violent
 

movement

 

Therefore

 
assume
 
branches
 

caused


previously

 

result

 

capable

 

Martens

 

berries

 

conclude

 

scanty

 

asparagus

 

planted

 

retain


immediately

 

Altogether

 

immersion

 

period

 

species

 
Helosciadium
 
foregoing
 

experiment

 
Johnston
 

favourable