FREE BOOKS

Author's List




PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   >>   >|  
urning to Fig. 6, we see a pipe through which the exhaust steam from the locomotive's cylinders is shot upwards into the funnel, in which, and in the smoke-box beneath it, a strong vacuum is formed while the engine is running. Now, "nature abhors a vacuum," so air will get into the smoke-box if there be a way open. There is--through the air-doors at the bottom of the furnace, the furnace itself, and the fire-tubes; and on the way oxygen combines with the carbon of the fuel, to form carbon dioxide. The power of the draught is so great that, as one often notices when a train passes during the night, red-hot cinders, plucked from the fire-box, and dragged through the tubes, are hurled far into the air. It might be mentioned in parenthesis that the so-called "smoke" which pours from the funnel of a moving engine is mainly condensing steam. A steamship, on the other hand, belches smoke only from its funnels, as fresh water is far too precious to waste as steam. We shall refer to this later on (p. 72). BOILER FITTINGS. The most important fittings on a boiler are:--(1) the safety-valve; (2) the water-gauge; (3) the steam-gauge; (4) the mechanisms for feeding it with water. THE SAFETY-VALVE. Professor Thurston, an eminent authority on the steam-engine, has estimated that a plain cylindrical boiler carrying 100 lbs. pressure to the square inch contains sufficient stored energy to project it into the air a vertical distance of 3-1/2 miles. In the case of a Lancashire boiler at equal pressure the distance would be 2-1/2 miles; of a locomotive boiler, at 125 lbs., 1-1/2 miles; of a steam tubular boiler, at 75 lbs., 1 mile. According to the same writer, a cubic foot of heated water under a pressure of from 60 to 70 lbs. per square inch has _about the same energy as one pound of gunpowder_. Steam is a good servant, but a terrible master. It must be kept under strict control. However strong a boiler may be, it will burst if the steam pressure in it be raised to a certain point; and some device must therefore be fitted on it which will give the steam free egress before that point is reached. A device of this kind is called a _safety-valve_. It usually blows off at less than half the greatest pressure that the boiler has been proved by experiment to be capable of withstanding. In principle the safety-valve denotes an orifice closed by an accurately-fitting plug, which is pressed against its seat on the boiler top by a w
PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   >>   >|  



Top keywords:
boiler
 

pressure

 

engine

 

safety

 

device

 

carbon

 
distance
 

energy

 

square

 
called

furnace

 

locomotive

 

strong

 

funnel

 
vacuum
 

withstanding

 

Lancashire

 
capable
 

writer

 

proved


experiment

 

According

 
tubular
 

orifice

 

pressed

 

carrying

 
sufficient
 

closed

 
denotes
 
accurately

vertical

 

stored

 

fitting

 

project

 

principle

 

greatest

 

raised

 

strict

 

control

 
However

cylindrical
 

egress

 

fitted

 

gunpowder

 
reached
 

master

 

terrible

 
servant
 

heated

 

dioxide