FREE BOOKS

Author's List




PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  
health insurance. There are, however, quite serious drawbacks to the use of computer-chips. When they do break down, it is a daunting challenge to figure out what the heck has gone wrong with them. A broken cordboard generally had a problem in it big enough to see. A broken chip has invisible, microscopic faults. And the faults in bad software can be so subtle as to be practically theological. If you want a mechanical system to do something new, then you must travel to where it is, and pull pieces out of it, and wire in new pieces. This costs money. However, if you want a chip to do something new, all you have to do is change its software, which is easy, fast and dirt-cheap. You don't even have to see the chip to change its program. Even if you did see the chip, it wouldn't look like much. A chip with program X doesn't look one whit different from a chip with program Y. With the proper codes and sequences, and access to specialized phone-lines, you can change electronic switching systems all over America from anywhere you please. And so can other people. If they know how, and if they want to, they can sneak into a microchip via the special phonelines and diddle with it, leaving no physical trace at all. If they broke into the operator's station and held Leticia at gunpoint, that would be very obvious. If they broke into a telco building and went after an electromechanical switch with a toolbelt, that would at least leave many traces. But people can do all manner of amazing things to computer switches just by typing on a keyboard, and keyboards are everywhere today. The extent of this vulnerability is deep, dark, broad, almost mind-boggling, and yet this is a basic, primal fact of life about any computer on a network. Security experts over the past twenty years have insisted, with growing urgency, that this basic vulnerability of computers represents an entirely new level of risk, of unknown but obviously dire potential to society. And they are right. An electronic switching station does pretty much everything Letitia did, except in nanoseconds and on a much larger scale. Compared to Miss Luthor's ten thousand jacks, even a primitive 1ESS switching computer, 60s vintage, has a 128,000 lines. And the current AT&T system of choice is the monstrous fifth-generation 5ESS. An Electronic Switching Station can scan every line on its "board" in a tenth of a second, and it does this over and over, t
PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  



Top keywords:
computer
 

program

 
change
 

switching

 
vulnerability
 

people

 

system

 
pieces
 

electronic

 

software


faults

 

station

 

broken

 
boggling
 

primal

 

network

 

toolbelt

 

Security

 

experts

 

keyboard


keyboards

 

manner

 

typing

 
switches
 

amazing

 

extent

 

things

 

traces

 

current

 
choice

vintage

 

thousand

 

primitive

 
monstrous
 
Station
 

generation

 

Electronic

 

Switching

 

Luthor

 
unknown

switch

 

represents

 

insisted

 

growing

 

urgency

 

computers

 

potential

 

larger

 

nanoseconds

 
Compared