FREE BOOKS

Author's List




PREV.   NEXT  
|<   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110  
111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   >>   >|  
e of land was, with many oscillations, gaining on the water, and there was much emigration to it from the over-populated seas. When the fish went on land in the Devonian, it must have found a diet (insects, etc.) there, and the insects must have been preceded by a plant population. We have first, therefore, to consider the evolution of the plant, and see how it increases in form and number until it covers the earth with the luxuriant forests of the Carboniferous period. The plant world, we saw, starts, like the animal world, with a great kingdom of one-celled microscopic representatives, and the same principles of development, to a great extent, shape it into a large variety of forms. Armour-plating has a widespread influence among them. The graceful Diatom is a morsel of plasm enclosed in a flinty box, often with a very pretty arrangement of the pores and markings. The Desmid has a coat of cellulose, and a less graceful coat of cellulose encloses the Peridinean. Many of these minute plants develop locomotion and a degree of sensitiveness (Diatoms, Peridinea, Euglena, etc.). Some (Bacteria) adopt animal diet, and rise in power of movement and sensitiveness until it is impossible to make any satisfactory distinction between them and animals. Then the social principle enters. First we have loose associations of one-celled plants in a common bed, then closer clusters or many-celled bodies. In some cases (Volvox) the cluster, or the compound plant, is round and moves briskly in the water, closely resembling an animal. In most cases, the cells are connected in chains, and we begin to see the vague outline of the larger plant. When we had reached this stage in the development of animal life, we found great difficulty in imagining how the chief lines of the higher Invertebrates took their rise from the Archaean chaos of early many-celled forms. We have an even greater difficulty here, as plant remains are not preserved at all until the Devonian period. We can only conclude, from the later facts, that these primitive many-celled plants branched out in several different directions. One section (at a quite unknown date) adopted an organic diet, and became the Fungi; and a later co-operation, or life-partnership, between a Fungus and a one-celled Alga led to the Lichens. Others remained at the Alga-level, and grew in great thickets along the sea bottoms, no doubt rivalling or surpassing the giant sea-weeds, sometimes 400 feet lo
PREV.   NEXT  
|<   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110  
111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   >>   >|  



Top keywords:
celled
 

animal

 

plants

 
difficulty
 

sensitiveness

 

period

 
graceful
 

cellulose

 

Devonian

 
development

insects

 

Archaean

 

greater

 
Invertebrates
 
higher
 

chains

 

briskly

 

closely

 
resembling
 

Volvox


cluster

 

compound

 

connected

 

reached

 

larger

 

outline

 

imagining

 

remained

 

thickets

 

Others


Lichens

 

operation

 
partnership
 

Fungus

 

bottoms

 
rivalling
 

surpassing

 

conclude

 

primitive

 

remains


preserved

 

branched

 
adopted
 

organic

 

unknown

 
directions
 

section

 
kingdom
 
microscopic
 
representatives