FREE BOOKS

Author's List




PREV.   NEXT  
|<   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118  
119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>   >|  
now develops a partition in the auricle (upper chamber), so that the aerated blood is to some extent separated from the venous blood. This approach toward the warm-blooded type begins in the "mud-fish," and is connected with the development of the lungs. Corresponding changes take place in the arteries, and we shall find that this change in structure is of very great importance in the evolution of the higher types of land-life. The heart of the higher land-animals, we may add, passes through these stages in its embryonic development. Externally the chief change in the Amphibian is the appearance of definite legs. The broad paddle of the fin is now useless, and its main stem is converted into a jointed, bony limb, with a five-toed foot, spreading into a paddle, at the end. But the legs are still feeble, sprawling supports, letting the heavy body down almost to the ground. The Amphibian is an imperfect, but necessary, stage in evolution. It is an improvement on the Dipneust fish, which now begins to dwindle very considerably in the geological record, but it is itself doomed to give way speedily before one of its more advanced descendants, the Reptile. Probably the giant salamander of modern Japan affords the best suggestion of the large and primitive salamanders of the Coal-forest, while the Caecilia--snake-like Amphibia with scaly skins, which live underground in South America--may not impossibly be degenerate survivors of the curious Aistopods. Our modern tailless Amphibia, frogs and toads, appear much later in the story of the earth, but they are not without interest here on account of the remarkable capacity which they show to adapt themselves to different surroundings. There are frogs, like the tree-frog of Martinique, and others in regions where water is scarce, which never pass through the tadpole stage; or, to be quite accurate, they lose the gills and tail in the egg, as higher land-animals do. On the other hand, there is a modern Amphibian, the axolotl of Mexico, which retains the gills throughout life, and never lives on land. Dr. Gadow has shown that the lake in which it lives is so rich in food that it has little inducement to leave it for the land. Transferred to a different environment, it may pass to the land, and lose its gills. These adaptations help us to understand the rich variety of Amphibian forms that appeared in the changing conditions of the Carboniferous world. When we think of the diet o
PREV.   NEXT  
|<   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118  
119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>   >|  



Top keywords:

Amphibian

 

higher

 

modern

 
change
 

animals

 

paddle

 

evolution

 
Amphibia
 

development

 

begins


account

 

underground

 
capacity
 

surroundings

 

Caecilia

 
remarkable
 

curious

 

Aistopods

 

tailless

 

survivors


America
 

interest

 
impossibly
 

degenerate

 

accurate

 

Transferred

 

inducement

 

environment

 
appeared
 

changing


conditions
 

Carboniferous

 

variety

 

adaptations

 
understand
 

tadpole

 

scarce

 

Martinique

 
regions
 

forest


axolotl

 

Mexico

 

retains

 

passes

 
importance
 

structure

 

stages

 

embryonic

 
useless
 

converted