FREE BOOKS

Author's List




PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  
en triangle _A_, or five points to obtain the five-sided figure at _B_. So can we deal with any number of figures placed at any angle. [Illustration: Fig. 114.] Both the above figures are placed in the same diagram, showing how any number can be drawn by means of the same point of sight and the same point of distance, which makes them belong to the same picture. It is to be noted that the figures appear reversed in the perspective. That is, in the geometrical triangle the base at _ab_ is uppermost, whereas in the perspective _ab_ is lowermost, yet both are nearest to the ground line. LVI HOW TO PUT A GIVEN SQUARE INTO ANGULAR PERSPECTIVE Let _ABCD_ (Fig. 115) be the given square on the geometrical plane, where we can place it as near or as far from the base and at any angle that we wish. We then proceed to find its perspective on the picture by finding the perspective of the four points _ABCD_ as already shown. Note that the two sides of the perspective square _dc_ and _ab_ being produced, meet at point _V_ on the horizon, which is their vanishing point, but to find the point on the horizon where sides _bc_ and _ad_ meet, we should have to go a long way to the left of the figure, which by this method is not necessary. [Illustration: Fig. 115.] LVII OF MEASURING POINTS We now have to find certain points by which to measure those vanishing or retreating lines which are no longer at right angles to the picture plane, as in parallel perspective, and have to be measured in a different way, and here geometry comes to our assistance. [Illustration: Fig. 116.] Note that the perspective square _P_ equals the geometrical square _K_, so that side _AB_ of the one equals side _ab_ of the other. With centre _A_ and radius _AB_ describe arc _Bm'_ till it cuts the base line at _m'_. Now _AB_ = _Am'_, and if we join _bm'_ then triangle _BAm'_ is an isosceles triangle. So likewise if we join _m'b_ in the perspective figure will m'Ab be the same isosceles triangle in perspective. Continue line _m'b_ till it cuts the horizon in _m_, which point will be the measuring point for the vanishing line _AbV_. For if in an isosceles triangle we draw lines across it, parallel to its base from one side to the other, we divide both sides in exactly the same quantities and proportions, so that if we measure on the base line of the picture the spaces we require, such as 1, 2, 3, on the length _Am'_, and
PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  



Top keywords:
perspective
 
triangle
 
picture
 

square

 

geometrical

 
points
 
figures
 

horizon

 

vanishing

 

Illustration


isosceles

 
figure
 

measure

 

equals

 
parallel
 

number

 

measured

 

require

 

MEASURING

 

POINTS


geometry

 

angles

 

retreating

 

length

 

longer

 
spaces
 
likewise
 

Continue

 
centre
 

describe


radius

 

measuring

 

proportions

 

quantities

 

divide

 
assistance
 

finding

 

reversed

 

belong

 

uppermost


ground

 

nearest

 
lowermost
 

distance

 

obtain

 
diagram
 
showing
 

produced

 

method

 
PERSPECTIVE