FREE BOOKS

Author's List




PREV.   NEXT  
|<   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73  
74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   >>   >|  
ective point. From point of sight _S_ draw a line through _P_ till it cuts _AB_ at _m_. From distance _D_ draw another line through _P_ till it cuts the base at _n_. From _m_ drop perpendicular, and then with centre _m_ and radius _mn_ describe arc, and where it cuts that perpendicular is the required point _P'_. We often have to make use of this problem. [Illustration: Fig. 108.] LII HOW TO PUT A GIVEN LINE INTO PERSPECTIVE This is simply a question of putting two points into perspective, instead of one, or like doing the previous problem twice over, for the two points represent the two extremities of the line. Thus we have to find the perspective of _A_ and _B_, namely _a'b'_. Join those points, and we have the line required. [Illustration: Fig. 109.] [Illustration: Fig. 110.] If one end touches the base, as at _A_ (Fig. 110), then we have but to find one point, namely _b_. We also find the perspective of the angle _mAB_, namely the shaded triangle mAb. Note also that the perspective triangle equals the geometrical triangle. [Illustration: Fig. 111.] When the line required is parallel to the base line of the picture, then the perspective of it is also parallel to that base (see Rule 3). LIII TO FIND THE LENGTH OF A GIVEN PERSPECTIVE LINE A perspective line _AB_ being given, find its actual length and the angle at which it is placed. This is simply the reverse of the previous problem. Let _AB_ be the given line. From distance _D_ through _A_ draw _DC_, and from _S_, point of sight, through _A_ draw _SO_. Drop _OP_ at right angles to base, making it equal to _OC_. Join _PB_, and line _PB_ is the actual length of _AB_. This problem is useful in finding the position of any given line or point on the perspective plane. [Illustration: Fig. 112.] LIV TO FIND THESE POINTS WHEN THE DISTANCE-POINT IS INACCESSIBLE [Illustration: Fig. 113.] If the distance-point is a long way out of the picture, then the same result can be obtained by using the half distance and half base, as already shown. From _a_, half of _mP_', draw quadrant _ab_, from _b_ (half base), draw line from _b_ to half Dist., which intersects _Sm_ at _P_, precisely the same point as would be obtained by using the whole distance. LV HOW TO PUT A GIVEN TRIANGLE OR OTHER RECTILINEAL FIGURE INTO PERSPECTIVE Here we simply put three points into perspective to obtain the giv
PREV.   NEXT  
|<   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73  
74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   >>   >|  



Top keywords:
perspective
 
Illustration
 
distance
 

points

 

problem

 
PERSPECTIVE
 
triangle
 

simply

 

required


picture

 

previous

 
perpendicular
 

parallel

 

obtained

 
actual
 

length

 

POINTS

 

DISTANCE


finding

 

angles

 

position

 

making

 

result

 

TRIANGLE

 

precisely

 
RECTILINEAL
 
obtain

FIGURE

 
intersects
 

INACCESSIBLE

 

ective

 

quadrant

 

represent

 

extremities

 

centre

 
putting

radius

 

question

 

describe

 

LENGTH

 

reverse

 

touches

 
shaded
 

geometrical

 

equals