FREE BOOKS

Author's List




PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  
om which --- - ------- = (-1)^n ------------, and the limit of the q_n q_{n-1} q_{n}q_{n-1} right-hand side is not necessarily zero. The tests for convergency are as follows: Let the continued fraction of the first class be reduced to the form 1 1 1 d1 + -- -- -- , then it is convergent if at least one of the d2 + d3 + d4 + ... series d3 + d5 + d7 + ..., d2 + d4 + d6 + ... diverges, and oscillates if both these series converge. For the convergence of the continued fraction of the second class there is no complete criterion. The following theorem covers a large number of important cases. "If in the infinite continued fraction of the second class a_n [>=] b_n + 1 for all values of n, it converges to a finite limit not greater than unity." 3. _The Incommensurability of Infinite Continued Fractions._--There is no general test for the incommensurability of the general infinite continued fraction. Two cases have been given by Legendre as follows:-- If a2, a3, ..., a_n, b2, b3, ...,b_n are all positive integers, then b2 b3 b_{n} I. The infinite continued fraction -- -- ----- converges a2 + a3 + ... + a_{n} + ... to an incommensurable limit if after some finite value of n the condition a_{n} [not <] b_{n} is always satisfied. b2 b3 b_{n} II. The infinite continued fraction -- -- ----- a2 - a3 - ... - a_{n} - ... converges to an incommensurable limit if after some finite value of n the condition a_{n} [>=] b_{n} + 1 is always satisfied, where the sign > need not always occur but must occur _infinitely often_. _Continuants._ The functions p_{n} and q_{n}, regarded as functions of a1, ..., a_{n}, b2, ..., b_{n} determined by the relations p_{n} = a_{n}p_{n-1} + b_{n}p_{n-2}, q_{n} = a_{n}q_{n-1} + b_{n}q_{n-2}, with the conditions p1 = a1, p0 = 1; q2 = a2, q1 = 1, q0 = 0, have been studied under the name of _continuants_. The notation adopted is / b2,...,b_{n}\ p_{n} = K ( ), \a1, a2,...,a_{n}/ and it is evident that we have / b3,...,b_{n}\ q_{n} = K ( ). \a2, a3,...,a_{n}/ The theory of continuants is due in the first place
PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  



Top keywords:

continued

 

fraction

 

infinite

 
continuants
 
finite
 

general

 
functions
 

converges

 

series


infinitely

 
Continuants
 

necessarily

 

determined

 

regarded

 

incommensurable

 
condition
 

satisfied

 

relations


adopted

 
notation
 

evident

 
theory
 

conditions

 

studied

 

integers

 

oscillates

 

important


convergent
 

diverges

 

values

 

number

 

converge

 

convergence

 

complete

 

criterion

 

covers


theorem

 

greater

 

reduced

 

Legendre

 

positive

 

convergency

 

incommensurability

 

Infinite

 

Incommensurability


Continued

 
Fractions