FREE BOOKS

Author's List




PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  
u3 u_{n} 1 + -- - 1 + -- - ... - 1 + ------- u1 u2 u_{n-1} which we can transform into u1 u2 u1u3 u2u4 u_{n-2}u_{n} -- ------- ------- ------- ---------------, 1 - u1 + u2 - u2 + u3 - u3 + u4 - ... - u_{n-1} + u_{n} a result given by Euler. 2. In this case the sum to n terms of the series is equal to the n^{th} convergent of the fraction. There is, however, a different way in which a Series may be represented by a continued fraction. We may require to represent the infinite convergent power series a0 + a1x + a2x squared + ... by an infinite continued fraction of the form [beta]0 [beta]1 x [beta]2 x [beta]3 x ------- --------- --------- --------- 1 - 1 - 1 - 1 - ... Here the fraction converges to the sum to infinity of the series. Its n^{th} convergent is not equal to the sum to n terms of the series. Expressions for [beta]0, [beta]1, [beta]2, ... by means of determinants have been given by T. Muir (_Edinburgh Transactions_, vol. xxvii.). A method was given by J. H. Lambert for expressing as a continued fraction of the preceding type the quotient of two convergent power series. It is practically identical with that of finding the greatest common measure of two polynomials. As an instance leading to results of some importance consider the series x x squared F(n,x) = 1 + --------------- + -------------------------------- + ... ([gamma] + n)1! ([gamma] + n)([gamma] + n + 1)2! We have x F(n + 1,x) - F(n,x) = - ------------------------------ F(n + 2,x), ([gamma] + n)([gamma] + n + 1) whence we obtain F(1,x) 1 x/[gamma]([gamma] + 1) x/([gamma] + 1)([gamma] + 2) ------ = -- ---------------------- ---------------------------- F(0,x) 1 + 1 + 1 + ..., which may also be written [gamma] x x ------- ----------- ----------- [gamma] + [gamma] + 1 + [gamma] + 2 + ... By putting +- x squared/4 for x in F(0,x) and F(1,x), and putting at the same time [gamma] = 1/2, we obtain x x squared x squared x squared x x squared x squared x squared tan x = -- -- -- -- tanh x = -- -- --
PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  



Top keywords:

squared

 

series

 

fraction

 

convergent

 

continued

 

infinite

 
putting

obtain

 

identical

 

expressing

 

greatest

 

finding

 
Lambert
 

common


practically

 

preceding

 

quotient

 
importance
 
written
 

polynomials

 

instance


results
 

leading

 
measure
 
Series
 

represent

 

require

 

represented


transform
 

result

 

determinants

 

Edinburgh

 

Transactions

 

Expressions

 

converges


infinity

 

method