FREE BOOKS

Author's List




PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   >>   >|  
-- 1 - 3 - 5 - 7 - ... 1 + 3 + 5 + 7 + ... These results were given by Lambert, and used by him to prove that [pi] and [pi] squared incommensurable, and also any commensurable power of e. Gauss in his famous memoir on the hypergeometric series F([alpha], [beta], [gamma], x) = [alpha].[beta] [alpha]([alpha] + 1)[beta]([beta] + 1) --------------x + -------------------------------------- x squared + ... 1.[gamma] 1.2.[gamma].([gamma] + 1) gave the expression for F([alpha], [beta] + 1, [gamma] + 1, x) / F([alpha], [beta], [gamma], x) as a continued fraction, from which if we put [beta] = 0 and write [gamma] - 1 for [gamma], we get the transformation [alpha] [alpha]([alpha] + 1) 1 + -------x + --------------------x squared + [gamma] [gamma]([gamma] + 1) [alpha]([alpha] + 1)([alpha] + 2) ---------------------------------x cubed + ... = [gamma]([gamma] + 1)([gamma] + 2) 1 [beta]1 x [beta]2 x -- --------- --------- where 1 - 1 - 1 - ... [alpha] ([alpha] + 1)[gamma] [beta]1 = -------, [beta]3 = --------------------------, ..., [gamma] ([gamma] + 1)([gamma] + 2) ([alpha] + n - 1)([gamma] + n - 2) [beta]_{2n-1} = ------------------------------------, ([gamma] + 2n - 3)([gamma] + 2n - 2) [gamma] - [alpha] 2([gamma] + 1 - [alpha]) [beta]2 = --------------------, [beta]4 = --------------------------, [gamma]([gamma] + 1) ([gamma] + 2)([gamma] + 3) n([gamma] + n - 1 - [alpha]) ..., [beta]_{2n} = ------------------------------------. ([gamma] + 2n - 2)([gamma] + 2n - 1) From this we may express several of the elementary series as continued fractions; thus taking [alpha] = 1, [gamma] = 2, and putting x for -x, x 1 squaredx 1 squaredx 2 squaredx 2 squaredx 3 squaredx 3 squaredx we have log(1 + x) = -- --- --- --- --- --- --- 1 + 2 + 3 + 4 + 5 + 6 + 7 + ... Taking [gamma] = 1, writing x/[alpha] for x and increasing [alpha] indefinitely, we have 1 x x x x x e^x =
PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   >>   >|  



Top keywords:

squaredx

 

squared

 

continued

 
series
 
transformation

putting

 

Taking

 

writing

 

indefinitely

 

increasing


taking

 

express

 

fractions

 
elementary
 
incommensurable

results

 
Lambert
 

commensurable

 

expression

 
fraction

hypergeometric

 

famous

 

memoir