FREE BOOKS

Author's List




PREV.   NEXT  
|<   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57  
58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   >>   >|  
tery drives electrons around a conducting circuit. You also found that there are several different kinds of batteries. Batteries differ in their abilities to drive electrons and it is therefore convenient to have some way of comparing them. We do this by measuring the electron-moving-force or "electromotive force" which each battery can exert. To express electromotive force and give the results of our measurements we must have some unit. The unit we use is called the "volt." The volt is defined by law and is based on the suggestions of the same body of scientists who recommended the ampere of our last letter. They defined it by telling how to make a particular kind of battery and then saying that this battery had an electromotive force of a certain number of volts. One can buy such standard batteries, or standard cells as they are called, or he can make them for himself. To be sure that they are just right he can then send them to the Bureau of Standards and have them compared with the standard cells which the Bureau has. I don't propose to tell you much about standard cells for you won't have to use them until you come to study physics in real earnest. They are not good for ordinary purposes because the moment they go to work driving electrons the conditions inside them change so their electromotive force is changed. They are delicate little affairs and are useful only as standards with which to compare other batteries. And even as standard batteries they must be used in such a way that they are not required to drive any electrons. [Illustration: Fig 12] Let's see how it can be done. Suppose two boys sit opposite each other on the floor and brace their feet together. Then with their hands they take hold of a stick and pull in opposite directions. If both have the same stick-motive-force the stick will not move. Now suppose we connect the negative feet--I mean negative terminals--of two batteries together as in Fig. 12. Then we connect their positive terminals together by a wire. In the wire there will be lots of free electrons ready to go to the positive plate of the battery which pulls the harder. If the batteries are equal in electromotive force these electrons will stay right where they are. There will be no stream of electrons and yet we'll be using one of the batteries to compare with the other. That is all right, you think, but what are we to do when the batteries are not just equal in e. m. f.? (e.
PREV.   NEXT  
|<   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57  
58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   >>   >|  



Top keywords:

batteries

 

electrons

 

standard

 

electromotive

 

battery

 

defined

 
positive
 

terminals

 

connect

 
negative

compare

 

opposite

 

Bureau

 

called

 
Suppose
 

required

 
standards
 

affairs

 

delicate

 

Illustration


motive
 

changed

 

suppose

 

directions

 

stream

 
harder
 

Standards

 

results

 

measurements

 

express


electron

 

moving

 

suggestions

 

letter

 

telling

 
ampere
 

recommended

 
scientists
 

measuring

 

circuit


conducting

 
drives
 

convenient

 

comparing

 

abilities

 

differ

 
Batteries
 

earnest

 
physics
 
ordinary