FREE BOOKS

Author's List




PREV.   NEXT  
|<   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88  
89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>   >|  
stream of any size going in circuit _L-C_. It is equally hard if _L-C_ has smaller capacity and inductance than _ab_ so that it naturally oscillates faster. I'll tell you exactly what it is like. Suppose you and your partner are trying to dance without any piano or other source of music. She has one tune running through her head and she dances to that, except as you drag her around the floor. You are trying to follow another tune. As a couple you have a difficult time going anywhere under these conditions. But it would be all right if you both had the same tune. If we want the electron stream in coil _ab_ to have a large guiding effect on the stream in coil _L-C_ we must see that both circuits have the same tune, that is the same natural frequency of oscillation. [Illustration: Fig 51] This can be shown very easily by a simple experiment. Suppose we set up our circuit _L-C_ with an ammeter in it, so as to be able to tell how large an electron stream is oscillating in that circuit. Let us also make the condenser a variable one so that we can change the natural frequency or tune of the circuit. Now let's see what happens to the current as we vary this condenser, changing the capacity and thus changing the tune of the circuit. If we use a variable plate condenser it will have a scale on top graduated in degrees and we can note the reading of the ammeter for each position of the movable plates. If we do, we find one position of these plates, that is one setting, corresponding to one value of capacity in the condenser, where the current in the circuit is a maximum. This is the setting of the condenser for which the circuit has the same tune or natural frequency as the circuit _cd_. Sometimes we say that the circuits are now in resonance. We also refer to the curve of values of current and condenser positions as a "tuning curve." Such a curve is shown in Fig. 51. [Illustration: Fig 52] That's all there is to tuning--adjusting the capacity and inductance of a circuit until it has the same natural frequency as some other circuit with which we want it to work. We can either adjust the capacity as we just did, or we can adjust the inductance. In that case we use a variable inductance as in Fig. 52. If we want to be able to tune to any of a large range of frequencies we usually have to take out or put into the circuit a whole lot of mil-henries at a time. When we do we get these mil-henries of inductance from a coi
PREV.   NEXT  
|<   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88  
89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>   >|  



Top keywords:

circuit

 

condenser

 
inductance
 

capacity

 

frequency

 

stream

 

natural

 

variable

 

current

 

circuits


plates

 
tuning
 
electron
 

Illustration

 
setting
 
henries
 

Suppose

 

position

 

ammeter

 

adjust


changing

 

graduated

 

reading

 

degrees

 

movable

 

values

 

frequencies

 

resonance

 

Sometimes

 
maximum

adjusting

 

positions

 
oscillation
 

running

 

source

 
dances
 

partner

 
smaller
 

equally

 
naturally

oscillates

 

faster

 

follow

 
experiment
 

simple

 

oscillating

 
change
 

easily

 

conditions

 
difficult