FREE BOOKS

Author's List




PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  
tern portal and the one going east from the shaft met in the heart of the mountain, the western line was only one-eighth of an inch too high, and three-sixteenths of an inch too far north. To reach this perfect result they had to triangulate from the eastern portal to distant [Page 63] mountain peaks, and thence down the valley to the central shaft, and thus fix the direction of the proposed line across the mouth of the shaft. Plumb-lines were then dropped one thousand and twenty-eight feet, and thus the line at the bottom was fixed. Three attempts were made--in 1867, 1870, and 1872--to fix the exact time-distance between Greenwich and Washington. These three separate efforts do not differ one-tenth of a second. Such demonstrable results on earth greatly increase our confidence in similar measurements in the skies. [Illustration: Fig. 22.] A scale is frequently affixed to a pocket-rule, by which we can easily measure one-hundredth of an inch (Fig. 22). The upper and lower line is divided into tenths of an inch. Observe the slanting line at the right hand. It leans from the perpendicular one-tenth of an inch, as shown by noticing where it reaches the top line. When it reaches the second horizontal line it has left the perpendicular one-tenth of that tenth--that is, one-hundredth. The intersection marks 99/100 of an inch from one end, and one-hundredth from the other. When division-lines, on measures of great nicety, get too fine to be read by the eye, we use the microscope. By its means we are able to count 112,000 lines ruled on a glass plate within an inch. The smallest object that can be seen by a keen eye makes an angle of 40", but by putting six microscopes on the scale of the telescope on the mural circle, we are able to reach an exactness of 0".1, or 1/3600 of an inch. This instrument is used to measure the declination of stars, or angular [Page 64] distance north or south of the equator. Thus a star's place in two directions is exactly fixed. When the telescope is mounted on two pillars instead of the face of a wall, it is called a transit instrument. This is used to determine the time of transit of a star over the meridian, and if the transit instrument is provided with a graduated circle it can also be used for the same purposes as the mural circle. Man's capacity to measure exactly is indicated in his ascertainment of the length of waves of light. It is easy to measure the three hundred feet distance
PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  



Top keywords:

measure

 
distance
 

instrument

 
transit
 

circle

 

hundredth

 
portal
 

perpendicular

 

reaches

 

mountain


telescope

 
smallest
 

object

 

capacity

 

ascertainment

 

nicety

 

hundred

 
measures
 

division

 

length


microscope

 

purposes

 

equator

 

declination

 

angular

 
meridian
 
pillars
 

directions

 
determine
 

mounted


provided
 

putting

 

microscopes

 

called

 
exactness
 

graduated

 

bottom

 

attempts

 
Greenwich
 

differ


efforts

 
Washington
 

separate

 

twenty

 

thousand

 
eastern
 

distant

 
triangulate
 

result

 

dropped