FREE BOOKS

Author's List




PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   >>   >|  
It is not necessary to confine ourselves to right angles in these measurements, for the same principles hold true in any angles. Now, suppose two observers on the equator should look at the moon at the same instant. One is on the top of Cotopaxi, on the west coast of South America, and one on the west coast of Africa. They are 90 deg. apart--half the earth's diameter between them. The one on Cotopaxi sees it exactly overhead, at an angle of 90 deg. with the earth's diameter. The one on the coast of Africa sees its angle with the same line to be 89 deg. 59' 3"--that is, its parallax is 57". Try the same experiment on the sun farther away, as is seen in Fig. 27, and its smaller parallax is found to be only 8".85. It is not necessary for two observers to actually station themselves at two distant parts of the earth in order to determine a parallax. If an observer could go from one end of the base-line to the other, he could determine both angles. Every observer is actually carried along through space by two motions: one is that of the earth's revolution of one thousand miles an hour around the axis; and the other is the movement of the earth around the sun of one thousand miles in a minute. Hence we can have the diameter not only of [Page 70] the earth (eight thousand miles) for a base-line, but the diameter of the earth's orbit (184,000,000 miles), or any part of it, for such a base. Two observers at the ends of the earth's diameter, looking at a star at the same instant, would find that it made the same angle at both ends; it has no parallax on so short a base. We must seek a longer one. Observe a certain star on the 21st of March; then let us traverse the realms of space for six months, at one thousand miles a minute. We come round in our orbit to a point opposite where we were six months ago, with 184,000,000 of miles between the points. Now, with this for a base-line, measure the angles of the same stars: it is the same angle. Sitting in my study here, I glance out of the window and discern separate bricks, in houses five hundred feet away, with my unaided eye; they subtend a discernible angle. But one thousand feet away I cannot distinguish individual bricks; their width, being only two inches, does not subtend an angle apprehensible to my vision. So at these distant stars the earth's enormous orbit, if lying like a blazing ring in space, with the world set on its edge like a pearl, and the sun blazing like a diam
PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   >>   >|  



Top keywords:

thousand

 
diameter
 

parallax

 
angles
 

observers

 

subtend

 
distant
 

bricks

 

determine

 

months


minute

 
Africa
 

Cotopaxi

 

instant

 

observer

 

blazing

 

points

 
opposite
 

longer

 

Observe


realms

 

traverse

 

distinguish

 

individual

 

vision

 
apprehensible
 
inches
 

discernible

 
glance
 

enormous


measure
 

Sitting

 

window

 

discern

 
unaided
 

hundred

 

separate

 

houses

 
overhead
 

smaller


experiment

 
farther
 

principles

 

measurements

 

confine

 
suppose
 

equator

 
America
 

movement

 

revolution