FREE BOOKS

Author's List




PREV.   NEXT  
|<   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83  
84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   >>   >|  
planets. In the case of some other planets it is steadily increasing, and, if it were to go on a sufficient time, might cause frightful extremes of temperature; but Lalande has shown that there are limits at which it is said, "Thus far shalt thou go, and no farther." Then a compensative diminution will follow. Conceive a large globe, to represent the sun, floating in a round pond. The axis will be inclined 7-1/2 deg. to the surface of the water, one side of the equator be 7-1/2 deg. below the surface, and the other side the same distance above. Let the half-submerged earth sail around the sun in an appropriate orbit. The surface of the water will be the plane of the orbit, and the water that reaches out to the shore, where the stars would be set, will be the plane of the ecliptic. It is the plane of the earth's orbit extended to the stars. The orbits of all the planets do not lie in the same plane, but are differently inclined to the plane of the ecliptic, or the plane of the earth's orbit. Going out from the sun's equator, so as to see all the orbits of the planets on the edge, we should see them inclined to that of the earth, as in Fig. 40. [Illustration: Fig. 40.--Inclination of the Planes of Orbits.] If the earth, and Saturn, and Pallas were lying in [Page 107] the same direction from the sun, and the outer bodies were to start in a direct line for the sun, they would not collide with the earth on their way; but Saturn would pass 4,000,000 and Pallas 50,000,000 miles over our heads. From this same cause we do not see Venus and Mercury make a transit across the disk of the sun at every revolution. [Illustration: Fig. 41.--Inclination of Orbits of Venus and Earth. Nodal Line, D B.] Fig. 41 shows a view of the orbits of the earth and Venus seen not from the edge but from a position somewhat above. The point E, where Venus crosses the plane of the earth's orbit, is called the ascending node. If the earth were at B when Venus is at E, Venus would be seen on the disk of the sun, making a transit. The same would be true if the earth were at D, and Venus at the descending node F. This general view of the flying spheres is full of interest. [Page 108] While quivering themselves with thunderous noises, all is silent about them; earthquakes may be struggling on their surfaces, but there is no hint of contention in the quiet of space. They are too distant from one another to exchange signals, except, perhaps,
PREV.   NEXT  
|<   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83  
84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   >>   >|  



Top keywords:

planets

 
inclined
 

surface

 

orbits

 

Saturn

 

Inclination

 

Pallas

 

Orbits

 
equator
 

transit


Illustration

 

ecliptic

 

distant

 

surfaces

 

struggling

 
contention
 

signals

 

exchange

 
Mercury
 

descending


position

 

flying

 

general

 

ascending

 
called
 

crosses

 

making

 

spheres

 

silent

 

earthquakes


noises

 

thunderous

 
interest
 
quivering
 

revolution

 

farther

 

compensative

 

diminution

 

follow

 

floating


represent

 
Conceive
 

increasing

 

sufficient

 

steadily

 

frightful

 

limits

 

Lalande

 
extremes
 
temperature