FREE BOOKS

Author's List




PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  
greatness of his power; for that he is strong in power not one faileth. [Page 210] _Number._ We find about five thousand stars visible to the naked eye in the whole heavens, both north and south. Of these twenty are of the first magnitude, sixty-five of the second, two hundred of the third, four hundred of the fourth, eleven hundred of the fifth, and three thousand two hundred of the sixth. We think we can easily number the stars; but train a six-inch telescope on a little section of the Twins, where six faint stars are visible, and over three thousand luminous points appear. The seventh magnitude has 13,000 stars; the eighth, 40,000; the ninth, 142,000. There are 18,000,000 stars in the zone called the Milky Way. When our eyes are not sensitive enough to be affected by the light of far-off stars the tastimetre feels their heat, and tells us the word of their Maker is true--"they are innumerable."[*] [Footnote *: _Telescopic Work._--Look at the Hyades and Pleiades in Taurus. Notice the different colors of stars in them both. Find the cluster Praesepe in Fig. 70, just a trifle above a point midway between Procyon and Regulus. It is equally distant from Procyon and a point a little below Pollux. Sweep along the Milky Way almost anywhere, and observe the distribution of stars; in some places perfect crowds, in others more sparsely scattered. Find with the naked eye the rich cluster in Perseus. Draw a line from Algol to a of Perseus (Fig. 67); turn at right angles to the right, at a distance of once and four-tenths the first line a brightness will be seen. The telescope reveals a gorgeous cluster.] _Double and Multiple Stars._ If we look up during the summer months nearly overhead at the star e Lyra, east of Vega (Fig. 72), we shall see with the naked eye that the star appears a little [Page 211] elongated. Turn your opera-glass upon it, and two stars appear. Turn a larger telescope on this double star, and each of the components separate into two. It is a double double star. We know that if two stars are near in reality, and not simply apparently so by being in the same line of sight, they must revolve around a common centre of gravity, or rush to a common ruin. Eagerly we watch to see if they revolve. A few years suffice to show them in actual revolution. Nay, the movement of revolution has been decided before the companion star was discovered. Sirius has long been known to have a proper motion, such as it w
PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  



Top keywords:

hundred

 

cluster

 
double
 

telescope

 

thousand

 

revolve

 

common

 

Procyon

 

visible

 

Perseus


magnitude

 
revolution
 
overhead
 

months

 
sparsely
 
summer
 

motion

 

scattered

 

angles

 

reveals


gorgeous

 

Double

 

distance

 

brightness

 

Multiple

 

tenths

 

proper

 

Eagerly

 

centre

 
gravity

suffice

 

decided

 
companion
 

movement

 

Sirius

 
actual
 

discovered

 
larger
 

components

 
separate

elongated

 

apparently

 

reality

 
simply
 

appears

 

section

 
easily
 

number

 

luminous

 
called