FREE BOOKS

Author's List




PREV.   NEXT  
|<   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148  
149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   >>   >|  
e (under spectroscopic scrutiny) those very rays which now seem wanting. There would be a spectrum of multitudinous bright lines, instead of a rainbow-tinted spectrum crossed by multitudinous dark lines. It is, indeed, only by contrast that the dark lines appear dark, just as it is only by contrast that the solar spots seem dark. Not only the penumbra but the umbra of a sun-spot, not only the umbra but the nucleus, not only the nucleus but the deeper black which seems to lie at the core of the nucleus, shine really with a lustre far exceeding that of the electric light, though by contrast with the rest of the sun's surface the penumbra looks dark, the umbra darker still, the nucleus deep black, and the core of the nucleus jet black. So the dark lines across the solar spectrum mark where certain rays are relatively faint, though in reality intensely lustrous. Conceive another change than that just imagined. Conceive the sun's globe to remain as at present, but the atmosphere to be excited to many times its present degree of light and splendour: then would all these dark lines become bright, and the rainbow-tinted background would be dull or even quite dark by contrast. This is not a mere fancy. At times, local disturbances take place in the sun which produce just such a change in certain constituents of the sun's atmosphere, causing the hydrogen, for example, to glow with so intense a heat that, instead of its lines appearing dark, they stand out as bright lines. Occasionally, too, the magnesium in the solar atmosphere (over certain limited regions only, be it remembered) has been known to behave in this manner. It was so during the intensely hot summer of 1872, insomuch that the Italian observer Tacchini, who noticed the phenomenon, attributed to such local overheating of the sun's magnesium vapour the remarkable heat from which we then for a time suffered. Now, the stars are suns, and the spectrum of a star is simply a miniature of the solar spectrum. Of course, there are characteristic differences. One star has more hydrogen, at least more hydrogen at work absorbing its rays, and thus has the hydrogen lines more strongly marked than they are in the solar spectrum. Another star shows the lines of various metals more conspicuously, indicating that the glowing vapours of such elements, iron, copper, mercury, tin, and so forth, either hang more densely in the star's atmosphere than in our sun's, or, being cooler, absorb
PREV.   NEXT  
|<   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148  
149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   >>   >|  



Top keywords:

spectrum

 

nucleus

 

hydrogen

 

contrast

 

atmosphere

 

bright

 

rainbow

 
multitudinous
 

Conceive

 

change


intensely
 

tinted

 

magnesium

 

present

 
penumbra
 
overheating
 

limited

 

regions

 

remembered

 

behave


remarkable

 

vapour

 

phenomenon

 

insomuch

 
manner
 

summer

 

Italian

 
observer
 

noticed

 

Tacchini


attributed

 

characteristic

 

conspicuously

 

indicating

 

glowing

 

metals

 

Another

 

vapours

 
elements
 

mercury


copper

 

densely

 

marked

 

strongly

 

absorb

 

simply

 

miniature

 

suffered

 
absorbing
 

cooler