FREE BOOKS

Author's List




PREV.   NEXT  
|<   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374  
375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   >>   >|  
surface. In connection with this problem it is interesting to note that this question of high speed was apparently regarded by all Edison's predecessors as the crucial point. Ducos, for example, expended a great deal of useless ingenuity in devising a camera by means of which a tape-line film could receive the photographs while being in continuous movement, necessitating the use of a series of moving lenses. Another experimenter, Dumont, made use of a single large plate and a great number of lenses which were successively exposed. Muybridge, as we have seen, used a series of cameras, one for each plate. Marey was limited to a very few photographs, because the entire surface had to be stopped and started in connection with each exposure. After the accomplishment of the fact, it would seem to be the obvious thing to use a single lens and move the sensitized film with respect to it, intermittently bringing the surface to rest, then exposing it, then cutting off the light and moving the surface to a fresh position; but who, other than Edison, would assume that such a device could be made to repeat these movements over and over again at the rate of twenty to forty per second? Users of kodaks and other forms of film cameras will appreciate perhaps better than others the difficulties of the problem, because in their work, after an exposure, they have to advance the film forward painfully to the extent of the next picture before another exposure can take place, these operations permitting of speeds of but a few pictures per minute at best. Edison's solution of the problem involved the production of a kodak in which from twenty to forty pictures should be taken IN EACH SECOND, and with such fineness of adjustment that each should exactly coincide with its predecessors even when subjected to the test of enlargement by projection. This, however, was finally accomplished, and in the summer of 1889 the first modern motion-picture camera was made. More than this, the mechanism for operating the film was so constructed that the movement of the film took place in one-tenth of the time required for the exposure, giving the film an opportunity to come to rest prior to the opening of the shutter. From that day to this the Edison camera has been the accepted standard for securing pictures of objects in motion, and such changes as have been made in it have been purely in the nature of detail mechanical refinements. The earliest form of
PREV.   NEXT  
|<   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374  
375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   >>   >|  



Top keywords:
Edison
 

exposure

 
surface
 

pictures

 

problem

 

camera

 
movement
 

photographs

 
cameras
 
motion

single

 

series

 

moving

 

lenses

 

predecessors

 
picture
 

connection

 

twenty

 

SECOND

 

fineness


adjustment

 

operations

 
extent
 

painfully

 
forward
 

advance

 
solution
 

involved

 

production

 
minute

coincide
 

permitting

 

speeds

 

modern

 

accepted

 

shutter

 

opening

 

giving

 

opportunity

 

standard


securing

 

refinements

 

earliest

 
mechanical
 
detail
 

objects

 

purely

 

nature

 

required

 
finally