FREE BOOKS

Author's List




PREV.   NEXT  
|<   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397  
398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   >>   >|  
land, of Boston, had become associated with him in his experiments, and they took out several joint patents subsequently. The first practical use of the system took place on a thirteen-mile stretch of the Staten Island Railroad with the results mentioned by Edison above. A little later, Edison and Gilliland joined forces with Lucius J. Phelps, another investigator, who had been experimenting along the same lines and had taken out several patents. The various interests were combined in a corporation under whose auspices the system was installed on the Lehigh Valley Railroad, where it was used for several years. The official demonstration trip on this road took place on October 6, 1887, on a six-car train running to Easton, Pennsylvania, a distance of fifty-four miles. A great many telegrams were sent and received while the train was at full speed, including a despatch to the "cable king," John Pender. London, England, and a reply from him. [17] [Footnote 17: Broadly described in outline, the system consisted of an induction circuit obtained by laying strips of tin along the top or roof of a railway car, and the installation of a special telegraph line running parallel with the track and strung on poles of only medium height. The train and also each signalling station were equipped with regulation telegraphic apparatus, such as battery, key, relay, and sounder, together with induction-coil and condenser. In addition, there was a transmitting device in the shape of a musical reed, or buzzer. In practice, this buzzer was continuously operated at high speed by a battery. Its vibrations were broken by means of a key into long and short periods, representing Morse characters, which were transmitted inductively from the train circuit to the pole line, or vice versa, and received by the operator at the other end through a high-resistance telephone receiver inserted in the secondary circuit of the induction-coil.] Although the space between the cars and the pole line was probably not more than about fifty feet, it is interesting to note that in Edison's early experiments at Menlo Park he succeeded in transmitting messages through the air at a distance of 580 feet. Speaking of this and of his other experiments with induction telegraphy by means of kites, communicating from one to the other and thus from the kites to instruments on the earth
PREV.   NEXT  
|<   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397  
398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   >>   >|  



Top keywords:

induction

 

system

 
circuit
 

experiments

 

Edison

 

received

 

running

 

distance

 

battery

 

buzzer


transmitting

 
patents
 
Railroad
 

continuously

 
operated
 

characters

 

musical

 

practice

 

vibrations

 

periods


broken

 

representing

 

regulation

 

telegraphic

 
apparatus
 

equipped

 
station
 

signalling

 

practical

 

condenser


addition

 
subsequently
 

sounder

 

device

 

inductively

 
succeeded
 

interesting

 
messages
 

instruments

 

communicating


Speaking

 

telegraphy

 
Boston
 

resistance

 

telephone

 
operator
 

height

 
receiver
 

inserted

 

secondary