FREE BOOKS

Author's List




PREV.   NEXT  
|<   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330  
331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   >>   >|  
ge of several thousand amperes without introducing undue resistance. This was also accomplished. Objections were naturally made to rails out in the open on the street surface carrying large currents at a potential of twenty volts. It was said that vehicles with iron wheels passing over the tracks and spanning the two rails would short-circuit the current, "chew" themselves up, and destroy the dynamos generating the current by choking all that tremendous amount of energy back into them. Edison tackled the objection squarely and short-circuited his track with such a vehicle, but succeeded in getting only about two hundred amperes through the wheels, the low voltage and the insulating properties of the axle-grease being sufficient to account for such a result. An iron bar was also used, polished, and with a man standing on it to insure solid contact; but only one thousand amperes passed through it--i.e., the amount required by a single car, and, of course, much less than the capacity of the generators able to operate a system of several hundred cars. Further interesting experiments showed that the expected large leakage of current from the rails in wet weather did not materialize. Edison found that under the worst conditions with a wet and salted track, at a potential difference of twenty volts between the two rails, the extreme loss was only two and one-half horse-power. In this respect the phenomenon followed the same rule as that to which telegraph wires are subject--namely, that the loss of insulation is greater in damp, murky weather when the insulators are covered with wet dust than during heavy rains when the insulators are thoroughly washed by the action of the water. In like manner a heavy rain-storm cleaned the tracks from the accumulations due chiefly to the droppings of the horses, which otherwise served largely to increase the conductivity. Of course, in dry weather the loss of current was practically nothing, and, under ordinary conditions, Edison held, his system was in respect to leakage and the problems of electrolytic attack of the current on adjacent pipes, etc., as fully insulated as the standard trolley network of the day. The cost of his system Mr. Edison placed at from $30,000 to $100,000 per mile of double track, in accordance with local conditions, and in this respect comparing very favorably with the cable systems then so much in favor for heavy traffic. All the arguments that could be urged in
PREV.   NEXT  
|<   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330  
331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   >>   >|  



Top keywords:

current

 

Edison

 
system
 

weather

 

amperes

 

respect

 
conditions
 
leakage
 

thousand

 

amount


insulators
 
wheels
 
potential
 

twenty

 

tracks

 

hundred

 
cleaned
 

manner

 

washed

 

action


accumulations

 

subject

 

telegraph

 

phenomenon

 

insulation

 

covered

 

greater

 

double

 

accordance

 

comparing


favorably

 

arguments

 

traffic

 

systems

 

network

 
conductivity
 
increase
 

practically

 

largely

 

served


chiefly
 
droppings
 

horses

 

ordinary

 

insulated

 

standard

 
trolley
 

adjacent

 
problems
 

electrolytic