FREE BOOKS

Author's List




PREV.   NEXT  
|<   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282  
283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   >>   >|  
ation of structural ironwork, running it up high." Into this converted structure was put the most complete steam plant obtainable, together with all the mechanical and engineering adjuncts bearing upon economical and successful operation. Being in a narrow street and a congested district, the plant needed special facilities for the handling of coal and ashes, as well as for ventilation and forced draught. All of these details received Mr. Edison's personal care and consideration on the spot, in addition to the multitude of other affairs demanding his thought. Although not a steam or mechanical engineer, his quick grasp of principles and omnivorous reading had soon supplied the lack of training; nor had he forgotten the practical experience picked up as a boy on the locomotives of the Grand Trunk road. It is to be noticed as a feature of the plant, in common with many of later construction, that it was placed well away from the water's edge, and equipped with non-condensing engines; whereas the modern plant invariably seeks the bank of a river or lake for the purpose of a generous supply of water for its condensing engines or steam-turbines. These are among the refinements of practice coincidental with the advance of the art. At the award of the John Fritz gold medal in April, 1909, to Charles T. Porter for his work in advancing the knowledge of steam-engineering, and for improvements in engine construction, Mr. Frank J. Sprague spoke on behalf of the American Institute of Electrical Engineers of the debt of electricity to the high-speed steam-engine. He recalled the fact that at the French Exposition of 1867 Mr. Porter installed two Porter-Allen engines to drive electric alternating-current generators for supplying current to primitive lighthouse apparatus. While the engines were not directly coupled to the dynamos, it was a curious fact that the piston speeds and number of revolutions were what is common to-day in isolated direct-coupled plants. In the dozen years following Mr. Porter built many engines with certain common characteristics--i.e., high piston speed and revolutions, solid engine bed, and babbitt-metal bearings; but there was no electric driving until 1880, when Mr. Porter installed a high-speed engine for Edison at his laboratory in Menlo Park. Shortly after this he was invited to construct for the Edison Pearl Street station the first of a series of engines for so-called "steam-dynamos," each indepen
PREV.   NEXT  
|<   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282  
283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   >>   >|  



Top keywords:

engines

 

Porter

 
engine
 

Edison

 

common

 
dynamos
 
piston
 
installed
 

construction

 

condensing


current
 

electric

 

coupled

 
revolutions
 
engineering
 
mechanical
 
electricity
 

series

 

Engineers

 
Institute

Electrical

 

station

 

French

 

Exposition

 

invited

 
construct
 

American

 

recalled

 

Street

 

behalf


Charles

 

indepen

 
advancing
 

Sprague

 

called

 

knowledge

 

improvements

 
direct
 

plants

 

bearings


isolated

 

babbitt

 

characteristics

 

number

 

primitive

 
lighthouse
 
apparatus
 

supplying

 

generators

 

Shortly