FREE BOOKS

Author's List




PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  
ater years, to a great extent, been replaced by registering meters that can be read by the customer." The principle employed in the Edison electrolytic meter is that which exemplifies the power of electricity to decompose a chemical substance. In other words it is a deposition bath, consisting of a glass cell in which two plates of chemically pure zinc are dipped in a solution of zinc sulphate. When the lights or motors in the circuit are turned on, and a certain definite small portion of the current is diverted to flow through the meter, from the positive plate to the negative plate, the latter increases in weight by receiving a deposit of metallic zinc; the positive plate meantime losing in weight by the metal thus carried away from it. This difference in weight is a very exact measure of the quantity of electricity, or number of ampere-hours, that have, so to speak, passed through the cell, and hence of the whole consumption in the circuit. The amount thus due from the customer is ascertained by removing the cell, washing and drying the plates, and weighing them in a chemical balance. Associated with this simple form of apparatus were various ingenious details and refinements to secure regularity of operation, freedom from inaccuracy, and immunity from such tampering as would permit theft of current or damage. As the freezing of the zinc sulphate solution in cold weather would check its operation, Edison introduced, for example, into the meter an incandescent lamp and a thermostat so arranged that when the temperature fell to a certain point, or rose above another point, it was cut in or out; and in this manner the meter could be kept from freezing. The standard Edison meter practice was to remove the cells once a month to the meter-room of the central-station company for examination, another set being substituted. The meter was cheap to manufacture and install, and not at all liable to get out of order. In December, 1888, Mr. W. J. Jenks read an interesting paper before the American Institute of Electrical Engineers on the six years of practical experience had up to that time with the meter, then more generally in use than any other. It appears from the paper that twenty-three Edison stations were then equipped with 5187 meters, which were relied upon for billing the monthly current consumption of 87,856 lamps and 350 motors of 1000 horse-power total. This represented about 75 per cent. of the entire lamp capacit
PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  



Top keywords:

Edison

 

current

 
weight
 

motors

 

circuit

 
meters
 
solution
 
sulphate
 

operation

 

consumption


positive
 

electricity

 

customer

 
chemical
 
freezing
 
plates
 
capacit
 

examination

 

company

 
substituted

incandescent

 

manufacture

 

install

 

thermostat

 

standard

 
practice
 

manner

 

temperature

 

liable

 

remove


entire

 

central

 
arranged
 

station

 

American

 

appears

 

twenty

 
stations
 

represented

 

equipped


relied

 

billing

 

monthly

 

generally

 

interesting

 
December
 
Institute
 

Electrical

 

experience

 

Engineers