FREE BOOKS

Author's List




PREV.   NEXT  
|<   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275  
276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   >>   >|  
f gas jets burning at each hour up to two or three o'clock in the morning. The next step was to divide the region into a number of sub-districts and institute a house-to-house canvass to ascertain precisely the data and conditions pertinent to the project. When the canvass was over, Edison knew exactly how many gas jets there were in every building in the entire district, the average hours of burning, and the cost of light; also every consumer of power, and the quantity used; every hoistway to which an electric motor could be applied; and other details too numerous to mention, such as related to the gas itself, the satisfaction of the customers, and the limitations of day and night demand. All this information was embodied graphically in large maps of the district, by annotations in colored inks; and Edison thus could study the question with every detail before him. Such a reconnaissance, like that of a coming field of battle, was invaluable, and may help give a further idea of the man's inveterate care for the minutiae of things. The laboratory note-books of this period--1878-80, more particularly--show an immense amount of calculation by Edison and his chief mathematician, Mr. Upton, on conductors for the distribution of current over large areas, and then later in the district described. With the results of this canvass before them, the sizes of the main conductors to be laid throughout the streets of this entire territory were figured, block by block; and the results were then placed on the map. These data revealed the fact that the quantity of copper required for the main conductors would be exceedingly large and costly; and, if ever, Edison was somewhat dismayed. But as usual this apparently insurmountable difficulty only spurred him on to further effort. It was but a short time thereafter that he solved the knotty problem by an invention mentioned in a previous chapter. This is known as the "feeder and main" system, for which he signed the application for a patent on August 4, 1880. As this invention effected a saving of seven-eighths of the cost of the chief conductors in a straight multiple arc system, the mains for the first district were refigured, and enormous new maps were made, which became the final basis of actual installation, as they were subsequently enlarged by the addition of every proposed junction-box, bridge safety-catch box, and street-intersection box in the whole area. When this patent, afte
PREV.   NEXT  
|<   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275  
276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   >>   >|  



Top keywords:
Edison
 

district

 

conductors

 

canvass

 

quantity

 

entire

 

burning

 

patent

 
system
 

invention


results

 

current

 

dismayed

 

costly

 
apparently
 

intersection

 

spurred

 

difficulty

 

insurmountable

 

distribution


figured

 

territory

 
streets
 

effort

 

copper

 
required
 

revealed

 

exceedingly

 

solved

 
multiple

straight

 
eighths
 
proposed
 

effected

 
saving
 

junction

 

refigured

 
enormous
 

subsequently

 

actual


enlarged

 
addition
 

problem

 

knotty

 

mentioned

 

previous

 
installation
 
street
 
chapter
 

bridge