FREE BOOKS

Author's List




PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  
s low, as indicated by the dotted line (Fig. 5), the air pressure is high, as similarly indicated. The early direct-acting compressor used steam at full pressure throughout the stroke. The Westinghouse pump, applied to locomotives, is built on this principle, and those who have observed it work have perhaps noticed that its speed of stroke is not uniform, but that it moves rapidly at the beginning, gradually reducing its speed, and seems to labor, until the direction of stroke is reversed. This construction is admitted to be wasteful, but in some cases, notably that of the Westinghouse pump, economy in steam consumption is sacrificed to lightness and economy of space. [Illustration: FIG. 5.] Many efforts were made to equalize the power and resistance by constructing the air compressor on the crank shaft principle, putting the cranks at various angles, and by angular positions of steam and air cylinders. Several types are shown in Fig. 6. [Illustration: FIG. 6.] Angular positions of the cylinder involve expensive construction and unsteadiness. Experience has conclusively proved that it does not pay to build air compressors with vertical cylinders, and moreover we have found out that there is nothing in the apparent difficulty in equalizing the strains in a direct-acting engine. It is simply necessary to add enough weight to the moving parts, that is, to the piston, piston rod, fly wheel, etc., to cut off early in the stroke and secure rotative speed with the most economical results and with the cheapest construction. It is obvious that the theoretically perfect air compressor is a direct-acting one with a conical air cylinder, the base of the cone being nearest the steam cylinder. This, from a practical point of view, is impossible. Mr. Hill, in referring to the fallacious tendencies of pneumatic engineers to equalize power and resistance in air compressors, says: "The ingenuity of mechanics has been taxed and a great variety of devices have been employed. It is usual to build on the pattern of presses which do their work in a few inches of the end of the stroke and employ heavy fly wheels, extra strong connections, and prodigious bed plates. Counterpoise weights are also attached to such machines; the steam is allowed to follow full stroke, steam cylinders are placed at awkward angles to the air-compressing cylinders and the motion conveyed through yokes, toggles, levers; and many joints and other devices are u
PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  



Top keywords:

stroke

 

cylinders

 

cylinder

 

construction

 

acting

 

direct

 
compressor
 

economy

 

pressure

 
compressors

piston

 

positions

 

angles

 

resistance

 
devices
 

equalize

 
Illustration
 

principle

 

Westinghouse

 

economical


fallacious
 

referring

 

cheapest

 

results

 

pneumatic

 
engineers
 

secure

 

rotative

 

tendencies

 

nearest


perfect

 

conical

 

practical

 

impossible

 

obvious

 
theoretically
 

machines

 
allowed
 

follow

 

Counterpoise


weights

 
attached
 

awkward

 

toggles

 

levers

 

joints

 
compressing
 

motion

 
conveyed
 
plates