FREE BOOKS

Author's List




PREV.   NEXT  
|<   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253  
254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   >>   >|  
---------------------------+ Furnace Design and the Combustion of Bagasse--With the advance in sugar manufacture there came, as described, a decrease in the amount of bagasse available for fuel. As the general efficiency of a plant of this description is measured by the amount of auxiliary fuel required per ton of cane, the relative importance of the furnace design for the burning of this fuel is apparent. In modern practice, under certain conditions of mill operation, and with bagasse of certain physical properties, the bagasse available from the cane ground will meet the total steam requirements of the plant as a whole; such conditions prevail, as described, in Java. In the United States, Cuba, Porto Rico and like countries, however, auxiliary fuel is almost universally a necessity. The amount will vary, depending to a great extent upon the proportion of fiber in the cane, which varies widely with the locality and with the age at which it is cut, and to a lesser extent upon the degree of purity of the manufactured sugar, the use of the maceration water and the efficiency of the mill apparatus as a whole. [Illustration: Fig. 27. Babcock & Wilcox Boiler Set with Green Bagasse Furnace] Experience has shown that this fuel may be burned with the best results in large quantities. A given amount of bagasse burned in one furnace between two boilers will give better results than the same quantity burned in a number of smaller furnaces. An objection has been raised against such practice on the grounds that the necessity of shutting down two boiler units when it is necessary for any reason to take off a furnace, requires a larger combined boiler capacity to insure continuity of service. As a matter of fact, several small furnaces will cost considerably more than one large furnace, and the saving in original furnace cost by such an installation, taken in conjunction with the added efficiency of the larger furnace over the small, will probably more than offset the cost of additional boiler units for spares. The essential features in furnace design for this class of fuel are ample combustion space and a length of gas travel sufficient to enable the gases to be completely burned before the boiler heating surfaces are encountered. Experience has shown that better results are secured where the fuel is burned on a hearth rather than on grates, the objection to the latter method being that the air for combustion enters largely
PREV.   NEXT  
|<   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253  
254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   >>   >|  



Top keywords:

furnace

 

burned

 

amount

 

bagasse

 

boiler

 

results

 
efficiency
 
combustion
 

furnaces

 

conditions


extent

 

larger

 

necessity

 

Experience

 

Furnace

 

Bagasse

 

auxiliary

 

practice

 

objection

 
design

capacity

 

combined

 

service

 

smaller

 

continuity

 

insure

 

reason

 

shutting

 
raised
 

quantity


grounds

 

matter

 

number

 

requires

 

spares

 
heating
 

surfaces

 

encountered

 

completely

 

travel


sufficient

 
enable
 

secured

 

enters

 

largely

 

method

 
hearth
 

grates

 

length

 
installation