FREE BOOKS

Author's List




PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95  
96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   >>   >|  
useful Formulae. I shall call them "Fig. I", "Fig. II", and "Fig. III". pg075 Fig. I. This includes any Pair of Premisses which are both of them Nullities, and which contain Unlike Eliminands. The simplest case is .---------------. .-------. xm_{0} + ym'_{0} |(O) | | |(O)| | | .---|---. | |---|---| | |(O)|(O)| | | | | |---|---|---|---| .-------. | | | | | | .---|---. | .'. xy_{0} |(O) | | .---------------. In this case we see that the Conclusion is a Nullity, and that the Retinends have kept their Signs. And we should find this Rule to hold good with _any_ Pair of Premisses which fulfil the given conditions. [The Reader had better satisfy himself of this, by working out, on Diagrams, several varieties, such as m_{1}x_{0} + ym'_{0} (which > xy_{0}) xm'_{0} + m_{1}y_{0} (which > xy_{0}) x'm_{0} + ym'_{0} (which > x'y_{0}) m'_{1}x'_{0} + m_{1}y'_{0} (which > x'y'_{0}).] If either Retinend is asserted in the _Premisses_ to exist, of course it may be so asserted in the _Conclusion_. Hence we get two _Variants_ of Fig. I, viz. (a) where _one_ Retinend is so asserted; (b) where _both_ are so asserted. [The Reader had better work out, on Diagrams, examples of these two Variants, such as m_{1}x_{0} + y_{1}m'_{0} (which proves y_{1}x_{0}) x_{1}m'_{0} + m_{1}y_{0} (which proves x_{1}y_{0}) x'_{1}m_{0} + y_{1}m'_{0} (which proves x'_{1}y_{0} + y_{1}x'_{0}).] The Formula, to be remembered, is xm_{0} + ym'_{0} > xy_{0} with the following two Rules:-- (1) _Two Nullities, with Unlike Eliminands, yield a Nullity, in which both Retinends keep their Signs._ pg076 (2) _A Retinend, asserted in the Premisses to exist, may be so asserted in the Conclusion._ [Note that Rule (1) is merely the Formula expressed in words.] Fig. II. This includes any Pair of Premisses, of which one is a Nullity and the other an Entity, and which contain Like Eliminands. The simplest case is xm_{0} + ym_{1} .---------------. .-------.
PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95  
96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   >>   >|  



Top keywords:

asserted

 

Premisses

 
proves
 

Conclusion

 

Nullity


Retinend

 
Eliminands
 
Formula
 

Reader

 
Variants

Diagrams

 
Retinends
 

includes

 

simplest

 

Nullities


Unlike

 

Entity

 
expressed
 

remembered

 
examples

conditions

 

Formulae

 

varieties

 

working

 

fulfil


satisfy