FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
the limit beyond which it is impossible to carry the distortion of a body without producing a permanent alteration in shape. After this limit has been exceeded, the size and shape of the specimen after removal of the load will not be the same as before, and the difference or amount of change is known as the ~permanent set~. Elastic limit as measured in tests and used in design may be defined as that unit stress at which the deformation begins to increase in a faster ratio than the applied load. In practice the elastic limit of a material under test is determined from the stress-strain diagram. It is that point in the line where the diagram begins perceptibly to curve.[2] (See Fig. 1.) [Footnote 2: If the straight portion does not pass through the origin, a parallel line should be drawn through the origin, and the load at elastic limit taken from this line. (See Fig. 32.)] ~Resilience~ is the amount of work done upon a body in deforming it. Within the elastic limit it is also a measure of the potential energy stored in the material and represents the amount of work the material would do upon being released from a state of stress. This may be graphically represented by a diagram in which the abscissae represent the amount of deflection and the ordinates the force acting. The area included between the stress-strain curve and the initial line (which is zero) represents the work done. (See Fig. 1.) If the unit of space is in inches and the unit of force is in pounds the result is inch-pounds. If the elastic limit is taken as the apex of the triangle the area of the triangle will represent the ~elastic resilience~ of the specimen. This amount of work can be applied repeatedly and is perhaps the best measure of the toughness of the wood as a working quality, though it is not synonymous with toughness. Permanent set is due to the ~plasticity~ of the material. A perfectly plastic substance would have no elasticity and the smallest forces would cause a set. Lead and moist clay are nearly plastic and wood possesses this property to a greater or less extent. The plasticity of wood is increased by wetting, heating, and especially by steaming and boiling. Were it not for this property it would be impossible to dry wood without destroying completely its cohesion, due to the irregularity of shrinkage. A substance that can undergo little change in shape without breaking or rupturing is ~brittle~. Chalk and glass are common
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:

elastic

 

amount

 

material

 

stress

 

diagram

 

origin

 

substance

 

plastic

 

strain

 
triangle

represent
 

pounds

 

toughness

 
property
 

plasticity

 

represents

 
measure
 

impossible

 
begins
 

specimen


applied
 

change

 

permanent

 

working

 

undergo

 

Permanent

 

irregularity

 

shrinkage

 

synonymous

 

quality


repeatedly

 

result

 

common

 
inches
 

breaking

 

resilience

 

rupturing

 
brittle
 

completely

 
steaming

heating
 
wetting
 

extent

 

greater

 

possesses

 

increased

 

boiling

 

destroying

 
perfectly
 

smallest