FREE BOOKS

Author's List




PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  
than the earth. The plate so often referred to (85.) was therefore fixed so as to rotate in a horizontal plane. The magnetic curves of the earth (114. _note_), i.e. the dip, passes through this plane at angles of about 70 deg., which it was expected would be an approximation to perpendicularity, quite enough to allow of magneto-electric induction sufficiently powerful to produce a current of electricity. 150. Upon rotation of the plate, the currents ought, according to the law (114. 121.), to tend to pass in the direction of the radii, through _all_ parts of the plate, either from the centre to the circumference, or from the circumference to the centre, as the direction of the rotation of the plate was one way or the other. One of the wires of the galvanometer was therefore brought in contact with the axis of the plate, and the other attached to a leaden collector or conductor (86.), which itself was placed against the amalgamated edge of the disc. On rotating the plate there was a distinct effect at the galvanometer needle; on reversing the rotation, the needle went in the opposite direction; and by making the action of the plate coincide with the vibrations of the needle, the arc through which the latter passed soon extended to half a circle. 151. Whatever part of the edge of the plate was touched by the conductor, the electricity was the same, provided the direction of rotation continued unaltered. 152. When the plate revolved _screw-fashion_, or as the hands of a watch, the current of electricity (150.) was from the centre to the circumference; when the direction of rotation was _unscrew_, the current was from the circumference to the centre. These directions are the same with those obtained when the unmarked pole of a magnet was placed beneath the revolving plate (99.). 153. When the plate was in the magnetic meridian, or in any other plane _coinciding_ with the magnetic dip, then its rotation produced no effect upon the galvanometer. When inclined to the dip but a few degrees, electricity began to appear upon rotation. Thus when standing upright in a plane perpendicular to the magnetic meridian, and when consequently its own plane was inclined only about 20 deg. to the dip, revolution of the plate evolved electricity. As the inclination was increased, the electricity became more powerful until the angle formed by the plane of the plate with the dip was 90 deg., when the electricity for a given velocity of t
PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  



Top keywords:

rotation

 

electricity

 
direction
 
centre
 
circumference
 

magnetic

 

current

 

needle

 

galvanometer

 

meridian


inclined

 

powerful

 

conductor

 

effect

 

directions

 
unmarked
 

unscrew

 
beneath
 

magnet

 
revolving

obtained

 

touched

 
Whatever
 

circle

 

provided

 

continued

 

fashion

 

revolved

 

referred

 

unaltered


inclination

 
increased
 

evolved

 

revolution

 

velocity

 

formed

 

produced

 

coinciding

 

extended

 

degrees


perpendicular

 

upright

 

standing

 

passes

 

angles

 

currents

 
magneto
 
electric
 
approximation
 

perpendicularity