FREE BOOKS

Author's List




PREV.   NEXT  
|<   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259  
260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   >>   >|  
required for the growth of a forest. Supposing all these separate fossil soils and coals to have been formed with the greatest possible rapidity, forty thousand years would be a very moderate calculation for this portion of the Carboniferous system; and for aught that we know thousands of years may be represented by a single fossil soil. But this is the age of only one member of the Carboniferous system, itself only a member of the great Palaeozoic group, and we have made no allowance for the abrasion from previous rocks and deposition of the immense mass of sandy and muddy sediment in which the coals and forests are imbedded, and which is vastly greater than the deltas of the largest modern rivers. Considerations of a physical rather than of a geological nature also give us long periods for the probable existence of the earth, though they serve to correct somewhat the extravagant estimates of some theorists. Croll has based an interesting calculation on the amount of erosion of the land by rivers. That of the Mississippi amounts to one foot in 6000 years. That of the Ganges gives one foot in 2358 years, the average being, say, one foot in 4179 years. Some smaller rivers give a much shorter time; but the average of two great rivers, one draining a very large area of the western and another of the eastern hemisphere, and in very different climates and geographical conditions, will probably be the most reliable datum. Croll, however, prefers the Mississippi rate.[145] If we estimate the proportion of land to water as 576 to 1390, this will give for the entire area of the ocean a rate of deposition of one foot in 14,400 years. Now the entire thickness of all the stratified rocks is estimated at 72,000 feet; and at this rate the enormous time of 1,036,800,000 years would be necessary. But we have no right to assume that deposition has been going on uniformly over the entire sea-bottom. On the contrary, the greater part of it takes place within a belt of about one hundred miles from the coasts, and the deposit of calcareous and other matters over the remainder will scarcely make up for the portions of this belt on which no deposit is taking place. This will give an area of deposit of about 11,650,000 square miles, consequently only one twelfth of the above time, or about 86,400,000 years, would be required. This can be but a very rough calculation; but it has the merit of squaring very nearly with the calculations derived
PREV.   NEXT  
|<   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259  
260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   >>   >|  



Top keywords:
rivers
 
calculation
 

deposition

 

deposit

 

entire

 
greater
 
average
 

Mississippi

 

fossil

 

system


member

 

Carboniferous

 

required

 
proportion
 

estimate

 

squaring

 

conditions

 
derived
 
calculations
 

geographical


climates

 

hemisphere

 

prefers

 

reliable

 
twelfth
 

eastern

 

taking

 

contrary

 
portions
 
remainder

calcareous

 

coasts

 

scarcely

 

hundred

 

bottom

 

enormous

 

stratified

 

estimated

 

matters

 
square

uniformly
 

assume

 

thickness

 
amount
 
allowance
 

abrasion

 

previous

 

immense

 
Palaeozoic
 
vastly