FREE BOOKS

Author's List




PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  
ions about the universe in which we are immersed. It is outside the province of this book and beyond the power of its author even so much as to sketch the main outlines of this theory, but certain of its conclusions are indispensable, since they baldly set forth our dilemma in regard to the measurement of space and time. We can measure neither except relatively, because they must be measured one by the other, and no matter how they vary, these variations always compensate one another, leaving us in the same state of ignorance that we were in before. Suppose that two intelligent beings, one on Mars, let us say, and the other on the earth, should attempt to establish _the same moment of time_, by the interchange of light signals, or by any other method which the most rigorous science could devise. Assume that they have for this purpose two identically similar and mechanically perfect chronometers, and that every difficulty of manipulation were successfully overcome. Their experiment could end only in failure, and the measure of this failure neither one, in his own place, could possibly know. If, after the experiment, the Martian, chronometer in hand, could be instantly and miraculously transported to the earth, and the two settings compared, they would be found to be different: how different, we do not know. The reason for the failure of any such experiment anywhere conducted can best be made plain by a crude paraphrase of a classic proposition from Relativity. Suppose it is required to determine the same moment of time at two different places on the earth's surface, as must be attempted in finding their difference in longitude. Take the Observatory at Greenwich for one place, and the observatory at Washington for the other. At the moment the sun is on the meridian of Greenwich, the exact time of crossing is noted and cabled to Washington. The chronometer at Washington is set accordingly, and the time checked back to Greenwich. This message arrives two seconds, say, after the original message was sent. Washington is at once notified of this double transmission interval. On the assumption that HALF of it represents the time the message took to travel from east to west, and the other half the time from west to east again, the Washington chronometer is set one second ahead of the signalled time, to compensate for its part of the loss. When the sun has reached the meridian of Washington, the whole process is repeated, a
PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  



Top keywords:
Washington
 
experiment
 
message
 
Greenwich
 

chronometer

 

failure

 

moment

 

measure

 

compensate

 

meridian


Suppose

 

surface

 

attempted

 

finding

 

places

 

reason

 

miraculously

 
transported
 
settings
 

compared


conducted

 

classic

 
proposition
 

Relativity

 

required

 

paraphrase

 
determine
 

crossing

 

travel

 
represents

interval

 
assumption
 

reached

 

process

 
repeated
 

signalled

 

transmission

 

double

 

instantly

 

cabled


observatory

 
longitude
 
Observatory
 

checked

 

notified

 

original

 

seconds

 

arrives

 

difference

 
mechanically