FREE BOOKS

Author's List




PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   >>  
horizon. The zenith distance of any point or celestial body is its angular distance from the zenith of the observer. The Ecliptic is the great circle representing the path in which the sun appears to move in the celestial sphere. As a matter of fact, you know that the earth moves around the sun, but as you observe the sun from some spot on the earth, it appears to move around the earth. This apparent track is called the Ecliptic as stated before, and in the illustration the Ecliptic is represented by the curved line, C V T. The plane of the Ecliptic is inclined to that of the Equinoctial at an angle of 23 deg. 27-1/2', and this inclination is called the obliquity of the Ecliptic. The Equinoxes are those points at which the Ecliptic and Equinoctial intersect, and when the sun occupies either of these two positions, the days and nights are of equal length. The Vernal Equinox is that one which the sun passes through or intersects in going from S to N declination, and the Autumnal Equinox that which it passes through or intersects in going from N to S declination. The Vernal Equinox (V in the illustration) is also designated as the First Point of Aries which is of use in reckoning star time and will be mentioned in more detail later. The Solstitial Points, or Solstices, are points of the Ecliptic at a distance of 90 deg. from the Equinoxes, at which the sun attains its highest declination in each hemisphere. They are called the Summer and Winter Solstice according to the season in which the sun appears to pass these points in its path. To sum up: The way to find any point on the earth is to find the distance of this point N or S of the equator (i.e., its Latitude) and its distance E or W of the meridian at Greenwich (i.e., its longitude). In the celestial sphere, the way to find the location of a point or celestial body such as the sun is to find its declination (i.e., distance in arc N or S of the equator) and its hour angle. By hour angle, I mean the distance in time from your meridian to the meridian of the point or celestial body in question. Assign for Night reading, Arts, in Bowditch: 270-271-272-273-274-275-277-278-279-280-282-283-284. WEDNESDAY LECTURE TIME BY THE SUN--MEAN TIME, SOLAR TIME, CONVERSION, ETC. There is nothing more important in all Navigation than the subject of Time. Every calculation for determining the position of your ship at sea must take into consideration some kind
PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   >>  



Top keywords:
distance
 

Ecliptic

 

celestial

 
declination
 

Equinox

 

called

 
points
 

appears

 

meridian

 
equator

Equinoxes

 

Vernal

 

intersects

 
passes
 
Equinoctial
 

zenith

 

sphere

 

illustration

 
calculation
 

question


determining

 

position

 

Assign

 

location

 

consideration

 

Latitude

 

longitude

 

Greenwich

 

WEDNESDAY

 

important


LECTURE

 

season

 
CONVERSION
 

Navigation

 

Bowditch

 
reading
 

subject

 

Autumnal

 

curved

 

represented


inclined

 

inclination

 
obliquity
 

stated

 

circle

 
representing
 

observer

 
horizon
 
angular
 
matter