FREE BOOKS

Author's List




PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  
all gulleys where the limestone and shale peculiar to this region will answer as well as more solid rock for dams not more than ten feet high; but with gravel banks on the sides or with soft sandy bottom, or where the clay soil becomes saturated with water at times, the gulley offers great difficulties for the construction of a dam. It will be wise, under such conditions, to carry a cut-off wall, not necessarily more than twelve inches thick, well into the bank, that is, about ten feet on each side, and under the dam this cut-off wall ought to go down until it reaches another stratum of sand or clay or rock. This cut-off wall, then, surrounding the main dam, shuts off the leakage, and the dam itself can be built without danger of undermining. In many large dams this cut-off wall is carried down more than a hundred feet, especially where the depth of water behind the dam is great. For small dams, a row of plank driven down behind a timber sill across and in the bed of the stream will often be sufficient. [Illustration: FIG. 40.--Section of a flood dam.] The cross section of the main dam, in cases where flood water in the spring runs over the dam, should be such that the bottom thickness is about one half the height, and Fig. 40 (after Wegman) shows a suitable cross-section of a dam ten feet high. Figure 41 (after Wegman) shows a cross-section intended to carry the water over the dam, especially in times of flood, without danger of erosion. Sometimes, in a narrow gorge with rock sides, it is possible to save masonry by building the dam in the form of an arch upstream, the resistance to the force of the water being then furnished by the abutment action of the rock sides, instead of by the weight of the dam, as in ordinary construction. For a dam ten feet high, the necessary thickness of the curved dam would probably not be more than twelve inches, while the ordinary gravity dam would be three or four feet thick. The workmanship on the former, however, must be of a very superior order. [Illustration: FIG. 41.--Section of a flood dam.] It is never desirable to allow the water flowing over the dam to fall directly on the ground in front, since the falling water will rapidly carry away this soil and undermine the front of the dam. For this reason, the lower section of the dam is made curved, as shown in Fig. 41, giving the water a horizontal direction as it leaves the dam instead of a vertical. A plank floor is ofte
PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  



Top keywords:
section
 

Illustration

 

ordinary

 
twelve
 
danger
 
inches
 

curved

 

Section

 

bottom

 

thickness


construction
 
Wegman
 

Sometimes

 

erosion

 

intended

 

furnished

 

building

 

masonry

 

abutment

 

resistance


upstream
 

narrow

 

desirable

 
undermine
 

reason

 
rapidly
 
ground
 

falling

 

vertical

 

leaves


giving

 

horizontal

 
direction
 
directly
 

workmanship

 
gravity
 

weight

 

Figure

 

flowing

 

superior


action

 

conditions

 
necessarily
 

difficulties

 
gulley
 
offers
 

reaches

 

saturated

 
peculiar
 

region