FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  
se who ponder his works seek to realise the object he set before him, not permitting his occasional vagueness to interfere with their appreciation of his speculations. We may see the ripples, and eddies, and vortices of a flowing stream, without being able to resolve all these motions into their constituent elements; and so it sometimes strikes me that Faraday clearly saw the play of fluids and ethers and atoms, though his previous training did not enable him to resolve what he saw into its constituents, or describe it in a manner satisfactory to a mind versed in mechanics. And then again occur, I confess, dark sayings, difficult to be understood, which disturb my confidence in this conclusion. It must, however, always be remembered that he works at the very boundaries of our knowledge, and that his mind habitually dwells in the 'boundless contiguity of shade' by which that knowledge is surrounded. In the researches now under review the ratio of speculation and reasoning to experiment is far higher than in any of Faraday's previous works. Amid much that is entangled and dark we have flashes of wondrous insight and utterances which seem less the product of reasoning than of revelation. I will confine myself here to one example of this divining power. By his most ingenious device of a rapidly rotating mirror, Wheatstone had proved that electricity required time to pass through a wire, the current reaching the middle of the wire later than its two ends. 'If,' says Faraday, 'the two ends of the wire in Professor Wheatstone's experiments were immediately connected with two large insulated metallic surfaces exposed to the air, so that the primary act of induction, after making the contact for discharge, might be in part removed from the internal portion of the wire at the first instance, and disposed for the moment on its surface jointly with the air and surrounding conductors, then I venture to anticipate that the middle spark would be more retarded than before. And if those two plates were the inner and outer coatings of a large jar or Leyden battery, then the retardation of the spark would be much greater.' This was only a prediction, for the experiment was not made.[2] Sixteen years subsequently, however, the proper conditions came into play, and Faraday was able to show that the observations of Werner Siemens, and Latimer Clark, on subterraneous and submarine wires were illustrations, on a grand scale, of the principle
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  



Top keywords:

Faraday

 
knowledge
 

previous

 
reasoning
 

middle

 

Wheatstone

 
resolve
 

experiment

 

electricity

 

induction


proved

 
rotating
 

ingenious

 

discharge

 

device

 

rapidly

 

mirror

 
contact
 

making

 

exposed


connected

 

insulated

 

immediately

 

Professor

 

experiments

 
metallic
 
reaching
 

primary

 
surfaces
 

current


required
 

surrounding

 

subsequently

 

proper

 
conditions
 

Sixteen

 

greater

 

prediction

 
observations
 

illustrations


principle

 
submarine
 

subterraneous

 

Werner

 

Siemens

 
Latimer
 

retardation

 
battery
 

moment

 

disposed