FREE BOOKS

Author's List




PREV.   NEXT  
|<   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  
body placed in the liquid, or acting on it, which confers upon it the property of viscosity; the hand would no longer move freely. During its motion, but then only, resistance would be encountered and overcome. Here we have rudely represented the case of the excited magnetic field, and the result in both cases would be substantially the same. In both cases heat would, in the end, be generated outside of the muscle, its amount being exactly equivalent to the resistance overcome. Let us push the analogy a little further; suppose in the case of the fluid rendered viscous, as assumed a moment ago, the viscosity not to be so great as to prevent the formation of ripples when the hand is passed through the liquid. Then the motion of the hand, before its final conversion into heat, would exist for a time as wave-motion, which, on subsiding, would generate its due equivalent of heat. This intermediate stage, in the case of our moving wire, is represented by the period during which the electric current is flowing through it; but that current, like the ripples of our liquid, soon subsides, being, like them, converted into heat. Do these words shadow forth anything like the reality? Such speculations cannot be injurious if they are enunciated without dogmatism. I do confess that ideas such as these here indicated exercise a strong fascination on my mind. Is then the magnetic field really viscous, and if so, what substance exists in it and the wire to produce the viscosity? Let us first look at the proved effects, and afterwards turn our thoughts back upon their cause. When the wire approaches the magnet, an action is evoked within it, which travels through it with a velocity comparable to that of light. One substance only in the universe has been hitherto proved competent to transmit power at this velocity; the luminiferous ether. Not only its rapidity of progression, but its ability to produce the motion of light and heat, indicates that the electric current is also motion.[1] Further, there is a striking resemblance between the action of good and bad conductors as regards electricity, and the action of diathermanous and adiathermanous bodies as regards radiant heat. The good conductor is diathermanous to the electric current; it allows free transmission without the development of heat. The bad conductor is adiathermanous to the electric current, and hence the passage of the latter is accompanied by the development of heat. I
PREV.   NEXT  
|<   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  



Top keywords:

motion

 
current
 

electric

 

viscosity

 

liquid

 

action

 
proved
 

substance

 

equivalent

 

produce


viscous

 

ripples

 

resistance

 
overcome
 
conductor
 

development

 

diathermanous

 

velocity

 

magnetic

 

represented


adiathermanous
 

approaches

 
thoughts
 

exercise

 
strong
 
fascination
 

effects

 

exists

 

magnet

 
competent

striking
 
resemblance
 
conductors
 
Further
 

electricity

 

bodies

 

passage

 

accompanied

 

transmission

 
radiant

ability

 

progression

 

universe

 
comparable
 

evoked

 

travels

 

hitherto

 
rapidity
 

luminiferous

 

confess