FREE BOOKS

Author's List




PREV.   NEXT  
|<   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284  
285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   >>   >|  
e smell. In its general behaviour it resembles arsine, burning with a violet flame and being decomposed by heat into its constituent elements. When passed into silver nitrate solution it gives a black precipitate of silver antimonide, SbAg3. It is decomposed by the halogen elements and also by sulphuretted hydrogen. All three hydrogen atoms are replaceable by organic radicals and the resulting compounds combine with compounds of the type RCl, RBr and RI to form stibonium compounds. There are three known oxides of antimony, the trioxide Sb4O6 which is capable of combining with both acids and bases to form salts, the tetroxide Sb2O4 and the pentoxide Sb2O5. Antimony trioxide occurs as the minerals valentinite and senarmontite, and can be artificially prepared by burning antimony in air; by heating the metal in steam to a bright red heat; by oxidizing melted antimony with litharge; by decomposing antimony trichloride with an aqueous solution of sodium carbonate, or by the action of dilute nitric acid on the metal. It is a white powder, almost insoluble in water, and when volatilized, condenses in two crystalline forms, either octahedral or prismatic. It is insoluble in sulphuric and nitric acids, but is readily soluble in hydrochloric and tartaric acids and in solutions of the caustic alkalies. On strongly heating in air it is converted into the tetroxide. The corresponding hydroxide, orthoantimonious acid, Sb(OH)3, can be obtained in a somewhat impure form by precipitating tartar emetic with dilute sulphuric acid; or better by decomposing antimonyl tartaric acid with sulphuric acid and drying the precipitated white powder at 100 deg. C. Antimony tetroxide is formed by strongly heating either the trioxide or pentoxide. It is a nonvolatile white powder, and has a specific gravity of 6.6952; it is insoluble in water and almost so in acids--concentrated hydrochloric acid dissolving a small quantity. It is decomposed by a hot solution of potassium bitartrate. Antimony pentoxide is obtained by repeatedly evaporating antimony with nitric acid and heating the resulting antimonic acid to a temperature not above 275 deg. C.; by heating antimony with red mercuric oxide until the mass becomes yellow (J. Berzelius); or by evaporating antimony trichloride to dryness with nitric acid. It is a pale yellow powder (of specific gravity 6.5), which on being heated strongly gives up o
PREV.   NEXT  
|<   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284  
285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   >>   >|  



Top keywords:

antimony

 

heating

 
powder
 

nitric

 

insoluble

 
Antimony
 
solution
 
strongly
 

sulphuric

 

trioxide


tetroxide
 

compounds

 

pentoxide

 
decomposed
 
decomposing
 
resulting
 
trichloride
 

obtained

 

gravity

 
specific

evaporating

 

silver

 

hydrochloric

 

elements

 

yellow

 
tartaric
 

burning

 

hydrogen

 

dilute

 

solutions


readily

 

soluble

 
impure
 

orthoantimonious

 

hydroxide

 

alkalies

 

converted

 
caustic
 

mercuric

 

repeatedly


antimonic

 

temperature

 

heated

 

Berzelius

 

dryness

 
bitartrate
 
potassium
 

precipitated

 

drying

 

antimonyl