FREE BOOKS

Author's List




PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95  
96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   >>   >|  
hall give rise to a new individual until it has united with another cell of quite a different sort and commonly derived from a different individual called the male. Why the egg cell is unable to develop without such union with male cell does not concern us here, but its purpose will be evident as the description proceeds. The egg cell as it comes from the ovary of the female individual is, however, not yet ready for union with the male cell, but must first go through a series of somewhat remarkable changes constituting what is called _maturation_ of the egg. This phenomenon has such an intimate relation to all problems connected with the cell, that it must be described somewhat in detail. There are considerable differences in the details of the process as it occurs in various animals, but they all agree in the fundamental points. The following is a general description of the process derived from the study of a large variety of animals and plants. [Illustration Fig. 34.--This and the following figures represent the process of fertilization of an egg. In all figures _cr_ is the chromosomes; _cs_ represents the cell substance (omitted in the following figures); _mc_ is the male reproductive cell lying in contact with the egg; _mn_ is the male nucleus after entering the egg.] [Illustration: FIG. 35.--The egg centrosome has divided, and the male cell with its centrosome has entered the egg.] In the cells of the body of the animal to which this description applies there are four chromosomes This is true of all the cells of the animal except the sexual cells. The eggs arise from the other cells of the body, but during their growth the chromatin splits in such a way that the egg contains double the number of chromosomes, i.e., eight (Fig. 34). If this egg should now unite with the other reproductive cell from the male, the resulting fertilized egg would plainly contain a number of chromosomes larger than that normal for this species of animal. As a result the next generation would have a larger number of chromosomes in each cell than the last generation, since the division of the egg in development is like that already described and always results in producing new cells with the same number of chromosomes as the starting cell. Hence, if the number of chromosomes in the next generation is to be kept equal to that in the last generation, this egg cell must get rid of a part of its chromatin material. This is done by a proces
PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95  
96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   >>   >|  



Top keywords:

chromosomes

 

number

 

generation

 

process

 

figures

 
description
 

individual

 

animal

 
called
 

chromatin


larger

 

animals

 

reproductive

 
derived
 

Illustration

 
centrosome
 

splits

 

double

 
divided
 

applies


entered

 

sexual

 

growth

 

species

 

starting

 

producing

 

results

 

proces

 
material
 

development


resulting

 
fertilized
 

plainly

 

normal

 

division

 

result

 

female

 

proceeds

 

evident

 

remarkable


constituting

 

series

 

purpose

 
united
 

commonly

 

concern

 
develop
 
unable
 

maturation

 

fertilization