FREE BOOKS

Author's List




PREV.   NEXT  
|<   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112  
113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   >>   >|  
t is in water. It will thus be seen that the structure of a compound must be known before the valences of the atoms making up the compound can be definitely decided upon. Such formulas as H-O-H and H-O-O-H are known as _structural formulas_, because they are intended to show what is known in regard to the arrangement of the atoms in the molecules. ~Valence and the replacing power of atoms.~ Just as elements having the same valence combine with each other atom for atom, so if they replace each other in a chemical reaction they will do so in the same ratio. This is seen in the following equations, in which a univalent hydrogen atom is replaced by a univalent sodium atom: NaOH + HCl = NaCl + H_{2}O. 2NaOH + H_{2}SO_{4} = Na_{2}SO_{4} + 2H_{2}O. Na + H_{2}O = NaOH + H. Similarly, one atom of divalent calcium will replace two atoms of univalent hydrogen or one of divalent zinc: Ca(OH)_{2} + 2 HCl = CaCl_{2} + 2H_{2}O. CaCl_{2} + ZnSO_{4} = CaSO_{4} + ZnCl_{2}. In like manner, one atom of a trivalent element will replace three of a univalent element, or two atoms will replace three atoms of a divalent element. ~Valence and its applications to formulas of salts.~ While the true nature of valence is not understood and many questions connected with the subject remain unanswered, yet many of the main facts are of much help to the student. Thus the formula of a salt, differs from that of the acid from which it is derived in that the hydrogen of the acid has been replaced by a metal. If, then, it is known that a given metal forms a normal salt with a certain acid, the formula of the salt can at once be determined if the valence of the metal is known. Since sodium is univalent, the sodium salts of the acids HCl and H_{2}SO_{4} will be respectively NaCl and Na_{2}SO_{4}. One atom of divalent zinc will replace 2 hydrogen atoms, so that the corresponding zinc salts will be ZnCl_{2} and ZnSO_{4}. The formula for aluminium sulphate is somewhat more difficult to determine. Aluminium is trivalent, and the simplest ratio in which the aluminium atom can replace the hydrogen in sulphuric acid is 2 atoms of aluminium (6 valences) to 3 molecules of sulphuric acid (6 hydrogen atoms). The formula of the sulphate will then be Al_{2}(SO_{4})_{3}. ~Valence and its application to equation writing.~ It will be readily seen that a knowledge of valence is also of very great ass
PREV.   NEXT  
|<   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112  
113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   >>   >|  



Top keywords:
hydrogen
 

replace

 

univalent

 

formula

 

divalent

 
valence
 

sodium

 

Valence

 

aluminium

 

element


formulas

 

replaced

 

trivalent

 

molecules

 
sulphate
 

compound

 

valences

 
sulphuric
 
derived
 

writing


equation
 

student

 
knowledge
 

application

 

differs

 

readily

 

simplest

 

normal

 

Aluminium

 

determined


determine

 
difficult
 
Similarly
 

regard

 

intended

 

arrangement

 

replacing

 

combine

 

elements

 

structural


structure

 

making

 

decided

 

chemical

 
reaction
 

nature

 

applications

 
understood
 
questions
 

unanswered