FREE BOOKS

Author's List




PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  
sulphur is contained in wool, fur, and hair, and not in silk nor in vegetable fibres. First, I will heat strongly some cotton with a little soda-lime in a tube, and hold a piece of moistened red litmus paper over the mouth of the tube. If nitrogen is present it will take up hydrogen in the decomposition ensuing, and escape as ammonia, which will turn the red litmus paper blue. With the cotton, however, no ammonia escapes, no turning of the piece of red litmus paper blue is observed, and so no nitrogen can be present in the cotton fibre. Secondly, I will similarly treat some silk. Ammonia escapes, turns the red litmus paper blue, possesses the smell like hartshorn, and produces, with hydrochloric acid on the stopper of a bottle, dense white fumes of sal-ammoniac (ammonium chloride). Hence silk contains nitrogen. Thirdly, I will heat some fur with soda-lime. Ammonia escapes, giving all the reactions described under silk. Hence fur, wool, etc., contain nitrogen. As regards proofs of all three of these classes of fibres containing carbon, hydrogen, and oxygen, the char they all leave behind on heating in a closed vessel is the carbon itself present. For the hydrogen and oxygen, a perfectly dry sample of any of these fabrics is taken, of course in quantity, and heated strongly in a closed vessel furnished with a condensing worm like a still. You will find all give you water as a condensate--the vegetable fibre, acid water; the animal fibres, alkaline water from the ammonia. The presence of water proves both hydrogen and oxygen, since water is a compound of these elements. If you put a piece of potassium in contact with the water, the latter will at once decompose, the potassium absorbing the oxygen, and setting free the hydrogen as gas, which you could collect and ignite with a match, when you would find it would burn. That hydrogen was the hydrogen forming part of your cotton, silk, or wool, as the case might be. We must now attack the question of sulphur. First, we prepare a little alkaline lead solution (sodium plumbate) by adding caustic soda to a solution of lead acetate or sugar of lead, until the white precipitate first formed is just dissolved. That is one of our reagents; the other is a solution of a red-coloured salt called nitroprusside of sodium, made by the action of nitric acid on sodium ferrocyanide (yellow prussiate). The first-named is very sensitive to sulphur, and turns black directly. To show this, we take
PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  



Top keywords:

hydrogen

 

litmus

 
oxygen
 

nitrogen

 

cotton

 

sulphur

 

present

 

escapes

 

sodium

 

solution


ammonia

 
fibres
 
Ammonia
 

strongly

 
vessel
 
closed
 

carbon

 

vegetable

 

potassium

 

alkaline


forming

 

absorbing

 

contact

 

compound

 

elements

 

decompose

 

collect

 

ignite

 

setting

 
dissolved

action

 

nitric

 
ferrocyanide
 

nitroprusside

 

coloured

 
called
 

yellow

 
prussiate
 

directly

 
sensitive

reagents

 

prepare

 

plumbate

 
adding
 

question

 

attack

 
caustic
 

acetate

 

proves

 
formed