FREE BOOKS

Author's List




PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   >>  
table star presented itself. THE GIANT BETELGEUSE Russell, Shapley, and Eddington had pointed out Betelgeuse (Arabic for "the giant's shoulder"), the bright red star in the constellation of Orion (Fig. 25), as the most favorable of all stars for measurement, and the last-named had given its angular diameter as 0.051 of a second of arc. This deduction from theory appeared in his recent presidential address before the British Association for the Advancement of Science, in which Professor Eddington remarked: "Probably the greatest need of stellar astronomy at the present day, in order to make sure that our theoretical deductions are starting on the right lines, is some means of measuring the apparent angular diameter of stars." He then referred to the work already in progress on Mount Wilson, but anticipated "that atmospheric disturbance will ultimately set the limit to what can be accomplished." [Illustration: Fig. 25. The giant Betelgeuse (within the circle), familiar as the conspicuous red star in the right shoulder of Orion (Hubble). Measures with the interferometer show its angular diameter to be 0.047 of a second of arc, corresponding to a linear diameter of 215,000,000 miles, if the best available determination of its distance can be relied upon. This determination shows Betelgeuse to be 160 light-years from the earth. Light travels at the rate of 186,000 miles per second, and yet spends 160 years on its journey to us from this star.] On December 13, 1920, Mr. Pease successfully measured the diameter of Betelgeuse with the 20-foot interferometer. As the outer mirrors were separated the interference fringes gradually became less distinct, as theory requires, and as Doctor Merrill had previously seen when observing Betelgeuse with the interferometer used for Capella. At a separation of 10 feet the fringes disappeared completely, giving the data required for calculating the diameter of the star. To test the perfection of the adjustment, the telescope was turned to other stars, of smaller angular diameter, which showed the fringes with perfect clearness. Turning back to Betelgeuse, they were seen beyond doubt to be absent. Assuming the mean wave-length of the light of this star to be 5750/10000000 of a millimetre, its angular diameter comes out 0.047 of a second of arc, thus falling between the values--0.051 and 0.031 of a second--predicted by Eddington and Russell from slightly different assumptions. Subse
PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   >>  



Top keywords:
diameter
 

Betelgeuse

 

angular

 

interferometer

 

Eddington

 

fringes

 
determination
 

theory

 

shoulder

 

Russell


gradually

 

separated

 

interference

 

requires

 
previously
 

Merrill

 

Doctor

 

distinct

 

journey

 

December


observing
 

travels

 

measured

 
successfully
 
spends
 

mirrors

 

perfection

 

length

 

10000000

 

millimetre


Assuming

 

absent

 

slightly

 

assumptions

 

predicted

 

falling

 

values

 
Turning
 

completely

 

giving


required

 

disappeared

 
Capella
 
separation
 

calculating

 

smaller

 
showed
 

perfect

 
clearness
 

turned