FREE BOOKS

Author's List




PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  
is indeed precisely similar with regard to the moon. The continual pull of the earth's gravitation takes the place of the string. If the moon were to go round and round slower than it does, it would tend to fall in towards the earth; if, on the other hand, it were to go faster, it would tend to rush away into space. The same kind of pull which the earth exerts upon the objects at its surface, or upon its satellite, the moon, exists through space so far as we know. Every particle of matter in the universe is found in fact to attract every other particle. The moon, for instance, attracts the earth also, but the controlling force is on the side of the much greater mass of the earth. This force of gravity or attraction of gravitation, as it is also called, is perfectly regular in its action. Its power depends first of all exactly upon the mass of the body which exerts it. The gravitational pull of the sun, for instance, reaches out to an enormous distance, controlling perhaps, in their courses, unseen planets circling far beyond the orbit of Neptune. Again, the strength with which the force of gravity acts depends upon distance in a regularly diminishing proportion. Thus, the nearer an object is to the earth, for instance, the stronger is the gravitational pull which it gets from it; the farther off it is, the weaker is this pull. If then the moon were to be brought nearer to the earth, the gravitational pull of the latter would become so much stronger that the moon's rate of motion would have also to increase in due proportion to prevent her from being drawn into the earth. Last of all, the point in a body from which the attraction of gravitation acts, is not necessarily the centre of the body, but rather what is known as its _centre of gravity_, that is to say, the balancing point of all the matter which the body contains. It should here be noted that the moon does not actually revolve around the centre of gravity of the earth. What really happens is that both orbs revolve around their _common_ centre of gravity, which is a point within the body of the earth, and situated about three thousand miles from its centre. In the same manner the planets and the sun revolve around the centre of gravity of the solar system, which is a point within the body of the sun. The neatly poised movements of the planets around the sun, and of the satellites around their respective planets, will therefore be readily understood to result
PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  



Top keywords:

centre

 

gravity

 

planets

 

gravitational

 

gravitation

 

revolve

 

instance

 

attraction

 

depends

 
distance

matter
 

controlling

 

particle

 
proportion
 

nearer

 

exerts

 
stronger
 

necessarily

 
weaker
 

increase


prevent
 

motion

 

brought

 

system

 

neatly

 

manner

 

thousand

 

poised

 

movements

 

readily


understood

 

result

 

satellites

 
respective
 

situated

 

balancing

 

common

 
surface
 

satellite

 
objects

exists
 
universe
 

faster

 

continual

 

regard

 

similar

 

precisely

 

string

 
slower
 

attract