FREE BOOKS

Author's List




PREV.   NEXT  
|<   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92  
93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>   >|  
dded that the phenol used must be of the greatest possible purity, and the requirements of the surgeon have been met by chemical and technological skill. From surgery back to colouring-matters, and from these to pharmaceutical preparations and perfumes, are we led in following up the cycles of chemical transformation which these tar-products have undergone in the hands of the technologist, guided by the researches of the chemist. It was observed by Runge in 1834 that crude carbolic acid, on treatment with lime, gave a red, acid colouring-matter which he separated and named "rosolic acid." The observation was followed up, and many other chemists obtained red colouring-matters by the oxidation of crude phenol. In 1859, the colour-giving property of carbolic acid acquired industrial importance from a discovery made by Kolbe and Schmitt in Germany, and by Persoz in France. These chemists found that a good yield of the colouring-matter was obtained by heating phenol with oxalic and sulphuric acids. Under the names of "corallin" and "aurin" the dye-stuff was introduced into commerce, and it is still used for certain purposes, especially for the preparation of coloured lakes for paper-staining. The scientific development of the history of this phenol dye is full of interest, but we can only give it a passing glance. Its interest lies chiefly in the circumstance that it is related to magenta, as was first pointed out by Caro and Wanklyn in 1866. In fact they obtained rosolic acid from magenta by the action of nitrous acid on the latter. We now know that a diazo-salt is first formed under these circumstances, and that the decomposition of this unstable compound in the presence of water gives rise to the rosolic acid. Later researches have shown that by heating rosolic acid with ammonia it is converted into rosaniline. It is also known that the commercial corallin, like the commercial magenta, is a mixture of closely related colouring-matters. The close analogy between magenta and rosolic acid was further shown by Caro in 1866. In the same way that Hofmann found that magenta could not be produced by the oxidation of _pure_ aniline, Caro found that a mixture of phenol and cresol was necessary for the production of rosolic acid when inorganic oxidizers were used. It is indeed this series of investigations upon the phenol dyes--investigations which have been taken part in not only by the chemists named, but also by Graebe, Dale an
PREV.   NEXT  
|<   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92  
93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>   >|  



Top keywords:

rosolic

 

phenol

 

colouring

 

magenta

 

matters

 

chemists

 
obtained
 
researches
 

carbolic

 
matter

heating
 

interest

 
commercial
 

mixture

 

corallin

 

chemical

 
investigations
 
oxidation
 

related

 

formed


nitrous

 
pointed
 

glance

 

passing

 
chiefly
 

circumstance

 

Wanklyn

 
circumstances
 
action
 

production


inorganic

 

oxidizers

 

cresol

 

produced

 

aniline

 

Graebe

 

series

 

Hofmann

 

ammonia

 

unstable


compound

 

presence

 

converted

 

rosaniline

 

analogy

 
closely
 
decomposition
 

technologist

 
guided
 

chemist