FREE BOOKS

Author's List




PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  
itro-groups, and there results a sulpho-acid of dinitro-alpha-naphthol. This was discovered in 1879 by Caro, and introduced as "acid naphthol yellow." It is now one of the standard yellow dyes. The history of another important group of colouring-matters dependent on naphthalene begins with A. v. Baeyer in 1871 and with Caro in 1874. Two products formerly known only as laboratory preparations were called into requisition by this discovery. One of these compounds, phthalic acid, is obtained from naphthalene, and the other, resorcin or resorcinol, is prepared from benzene. Phthalic acid, which was discovered in 1836 by Laurent, is a product of the oxidation of many benzenoid compounds. Chemically considered it is a di-derivative of benzene, _i.e._ two of the hydrogen atoms of benzene are replaced by certain groups of carbon, oxygen, and hydrogen atoms. We have seen how the replacement of hydrogen by an ammonia-residue, amidogen, gives rise to bases such as amidobenzene (aniline), or diamidobenzene. Similarly, the replacement of hydrogen by a water-residue, hydroxyl, gives rise to a phenol. The group of carbon, oxygen, and hydrogen atoms which confers the property of acidity upon an organic compound is a half-molecule of oxalic acid--it is known as the carboxyl group. Thus benzoic acid is the carboxyl-derivative of benzene, and the phthalic acid with which we are now concerned is a dicarboxyl-derivative of benzene. It is related to benzoic acid in the same way that diamidobenzene is related to aniline. Three isomeric phthalic acids are known, but only one of these is of use in the present branch of manufacture. The acid in question, although a derivative of benzene, is most economically prepared by the oxidation of certain derivatives of naphthalene which, when completely broken down by energetic oxidizing agents, furnish the acid. Thus the dinitronaphthol described as Manchester yellow, if heated for some time with dilute nitric acid, furnishes phthalic acid. The latter is made on a large scale by the oxidation of a compound which naphthalene forms with chlorine, and known as naphthalene tetrachloride, because it contains four atoms of chlorine. The other compound, resorcinol, was known to chemistry ten years before it was utilized as a source of colouring-matters. It was originally prepared by fusing certain resins, such as galbanum, asafoetida, &c., with caustic alkali. Soon after its discovery, viz. in 1866, it was sh
PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  



Top keywords:

benzene

 

naphthalene

 

hydrogen

 

derivative

 

phthalic

 

yellow

 
prepared
 
compound
 

oxidation

 
benzoic

chlorine
 

aniline

 
naphthol
 

discovery

 

replacement

 

residue

 
compounds
 
carboxyl
 

diamidobenzene

 

matters


groups

 
colouring
 

related

 

discovered

 
oxygen
 

resorcinol

 

carbon

 
completely
 
broken
 

economically


derivatives

 

manufacture

 

isomeric

 

dicarboxyl

 

question

 

energetic

 

present

 

branch

 

chemistry

 

tetrachloride


alkali

 

utilized

 

galbanum

 

asafoetida

 

caustic

 
resins
 
source
 

originally

 
fusing
 

Manchester