FREE BOOKS

Author's List




PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  
ght springs are used to hold the packing against the shaft and in some the pressure of steam in the case does this. There is a pipe, also shown in Fig. 12, leading from the main line to the packing case, the pressure in the pipe being reduced. The space between the two upper sets of rings is drained to the third stage by means of a three-way cock, which keeps the balance between the atmosphere and packing-case pressure. The carbon rings are fitted to the shaft with a slight clearance to start with, and very soon get a smooth finish, which is not only practically steam-tight but frictionless. [Illustration: FIG. 12] The carbon ring shown in Fig. 12 is the older design. The segments are held against the flat bearing surface of the case by spiral springs set in brass ferrules. The circle is held together by a bronze strap screwed and drawn together at the ends by springs. Still other springs press the straps against the surface upon which the carbon bears, cutting off leaks through joints and across horizontal surfaces of the carbon. The whole ring is prevented from turning by a connecting-rod which engages a pin in the hole, like those provided for the springs. [Illustration: FIG. 13] [Illustration: FIG. 14] [Illustration: FIG. 15] [Illustration: FIG. 16] The Safety-stop There are several designs of safety-stop or speed-limit devices used with these turbines, the simplest being of the ring type shown in Fig. 13. This consists of a flat ring placed around the shaft between the turbine and generator. The ring-type emergencies are now all adjusted so that they normally run concentric with the shaft, but weighted so that the center of gravity is slightly displaced from the center. The centrifugal strain due to this is balanced by helical springs. But when the speed increases the centrifugal force moves the ring into an eccentric position, when it strikes a trigger and releases a weight which, falling, closes the throttle and shuts off the steam supply. The basic principle upon which all these stops are designed is the same--the centrifugal force of a weight balanced by a spring at normal speed. Figs. 14, 15, and 16 show three other types. The Mechanical Valve-Gear Fig. 17 shows plainly the operation of the mechanical valve-gear. The valves are located in the steam chests, which are bolted to the top of the casing directly over the first sets of expansion nozzles. The chests, two in number, are on o
PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  



Top keywords:
springs
 
Illustration
 
carbon
 

packing

 

pressure

 
centrifugal
 
center
 

balanced

 

weight

 

surface


chests

 
turbine
 

consists

 

increases

 
generator
 

concentric

 

adjusted

 

weighted

 

gravity

 

emergencies


strain

 

displaced

 

slightly

 

helical

 

designed

 
valves
 
located
 

mechanical

 
operation
 

plainly


bolted

 

nozzles

 

number

 

expansion

 

casing

 
directly
 

falling

 

closes

 

throttle

 

releases


trigger

 

position

 
strikes
 

supply

 

Mechanical

 
normal
 
spring
 

principle

 

eccentric

 
smooth