FREE BOOKS

Author's List




PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  
is illustrated in Fig. 239. The Titan battery uses a somewhat similar seal, as shown in Fig. 293. Some of the older Willard batteries have a chamfer or groove in the under, side of the cover. The posts have a ring of lead in the base which fits up into the groove in the cover to make a tight joint. This is illustrated in Fig. 13. The later Willard constructions, using a rubber gasket seal and a lead cover insert, are illustrated in Figs. 278 and 287. Filling Tube or Vent Tube Construction. Quite a number of designs have been developed in the construction of the filling or vent tube. In double covers, the tube is sometimes a separate part which is screwed into the lower cover. In other batteries using double covers, the tube is an integral part of the cover, as shown in Fig. 10. In all single covers, the tube is moulded integral with the cover. [Fig. 14a Vent hold in U.S.L. battery] Several devices have been developed to make it impossible to overfill batteries. This has been done by the U. S. L. and Exide companies on older types of batteries, their constructions being described as follows: In old U. S. L. batteries, a small auxiliary vent tube is drilled, as shown in Fig. 14. When filling to replace evaporation, this vent tube prevents overfilling. [Fig. 14b Filling U.S.L. battery] A finger is placed over the auxiliary vent tube shown in Fig. 14. The water is then poured in through the filling or vent tube. When the water reaches the bottom of the tube, the air imprisoned in the expansion chamber can no longer escape. Consequently the water can rise no higher in this chamber, but simply fills up the tube. Water is added till it reaches the top of the tube. The finger is then removed from the vent tube. This allows the air to escape from the expansion chamber. The water will therefore fall in the filling or vent tube, and rise slightly in the expansion chamber. The construction makes it impossible to overfill the battery, provided that the finger is held on the vent hole as directed. [Fig. 14c Filling U.S.L. battery (old types)] Figure 15 shows the Non-Flooding Vent and Filling Plug used in the older type Exide battery, and in the present type LXRV. The new Exide cover, which does not use the non-flooding feature, is also shown. The old construction is described as follows: [Fig. 15a Sectional view of cover in older type Exide battery. Top view of cover and filling plug, plug removed]
PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  



Top keywords:

battery

 

batteries

 

filling

 

Filling

 

chamber

 

covers

 
construction
 

finger

 

expansion

 
illustrated

double

 

reaches

 

developed

 

Willard

 
overfill
 

removed

 
integral
 

escape

 

impossible

 

groove


constructions
 

auxiliary

 

simply

 

Consequently

 

bottom

 
higher
 

longer

 

poured

 

imprisoned

 

present


Flooding

 

Sectional

 

feature

 

flooding

 

slightly

 
Figure
 

directed

 
provided
 

devices

 

gasket


insert

 
rubber
 

number

 

designs

 

Construction

 

similar

 
chamfer
 

separate

 
drilled
 
companies